La luce

In questa sezione potete trovare i nostri materiali didattici per la scuola primaria sulla luce.

La luce

Appunti per la scuola primaria

La luce è una forma di energia. È essenziale per la vita sulla Terra: senza di lei, tutte le piante morirebbero e questo causerebbe la fine della vita sul nostro pianeta.

Alcuni oggetti sono in grado di emettere la luce: si chiamano sorgenti luminose. Le sorgenti luminose possono essere naturali come il Sole, le stelle e alcuni animali (come le lucciole) o artificiali, come le lampade, candele, fari, insegne luminose e schermi digitali.

La maggior parte degli oggetti non emette luce ma viene illuminata. I …

Continua la lettura su: https://portalebambini.it/luce/ Autore del post: Portalebambini Fonte: https://portalebambini.it/

Articoli Correlati

La mitologia nell’Universo: Plutone, pianeta nano

Una storia un po’ triste fra mitologia e astronomia. La strana metamorfosi: Ades o Plutone da signore dell’Oltretomba a pianeta nano.
Gian Lorenzo Bernini, il ratto di Proserpina, Roma
Quella che state per leggere è la storia un po’ triste, fra mitologia e astronomia, di Ades o Plutone, che, dopo essere stato per secoli considerato il dio dell’inferno, viene relegato in soffitta per oltre un millennio e mezzo. Nel 1930 ritorna in ballo come nono pianeta del sistema solare; ma dopo 76 anni viene riclassificato e inserito fra i pianeti nani, dove ritrova (ahimè!) l’irata suocera Dèmetra o Cèrere.
La mitologia.
Ades (“invisibile” o “che rende invisibile”), figlio di Cròno e Rèa, fratello di Zèus, signore degli dei e degli uomini, e di Posèidone, signore del mare, scuotitore della terra, è il dio dell’inferno e regna sulle ombre dei morti con la moglie Persèfone o Còre, che egli rapì alla madre Dèmetra, chiamata dai Romani Cèrere, anch’ella figlia di Cròno e di Rèa e dea dell’agricoltura, onorata nei misteri eleusini.
Vale la pena di approfondire un po’ la storia del ratto di Persèfone, chiamata dai Romani Prosèrpina e il cui padre era Zèus. La madre errò sulla terra nove giorni per cercarla, e finalmente, irata, fece sì che il terreno divenisse sterile. Zèus, per placarla, ottenne da Ades che Persèfone trascorresse i quattro mesi dell’inverno agli Inferi col marito e gli altri otto con la madre.
Anticamente si credeva che Ades stesso salisse sulla terra a prendere le anime dei defunti, ma in seguito questo ufficio fu attribuito ad Ermes, figlio di Zèus e di Màia, messaggero degli dei, chiamato perciò “psykhopompòs” (“che conduce o accompagna le anime dei morti”).
Ades, divinità truce e terribile, nel V sec. a.C., nei misteri eleusini fu venerato anche col nome di Plutone (“ricco” o “dispensatore di ricchezza”) e considerato una divinità benefica che manda dalla profondità della terra prosperità e ricchezza.
Con l’avvento del cristianesimo, Ades o Plutone andò ad ammuffire in soffitta, come tutti gli dei dell’Olimpo. Neppure Dante, che nell’”Inferno” rispolverò Caronte e Cerbero, lo degnò della benché minima considerazione.
Gian Lorenzo Bernini, il ratto di Proserpina, particolare
L’astronomia.
Nel 1915 l’astronomo americano Percival Lowell (1855-1916), studiando le perturbazioni residue di Urano non giustificate completamente dalla sola presenza di Nettuno, intuì la presenza di un nuovo pianeta, del quale calcolò l’orbita senza tuttavia trovarlo nel cielo. Alla stessa conclusione giunse in seguito anche William Henry Pickering (1858-1938). Il pianeta fu scoperto per una fortunata combinazione il 18 febbraio 1930 da Clyde Tombough, in una posizione assai prossima a quella prevista. Al nuovo corpo celeste venne dato il nome di Plutone perché il suo simbolo PL ricorda le iniziali di Percival Lowell.
Plutone diventa così il nono pianeta del sistema solare, distante in media dal Sole 5,906 miliardi di km, con perielio a 4,437 e afelio a 7,376 miliardi di km; al suo perielio si trova perciò più vicino all’astro centrale di quanto non lo sia Nettuno. Compie la sua rivoluzione in 247,9 anni “siderei” (cioè riferiti alle stelle fisse), alla velocità media di 4,669 km/s su un’orbita ellittica di eccentricità e = 0,2448, maggiore di quella di tutti gli altri pianeti, con inclinazione media sul piano dell’”eclittica” (la traiettoria descritta apparentemente dal Sole sulla sfera celeste) di 17,13826°.
La massa di Plutone è lo 0,22% di quella terrestre e meno del 18% di quella lunare, ma è anche minore di quella di altri sei satelliti del sistema solare: Ganimede [Giove], Titano [Saturno], Callisto, Io, Europa [Giove], Tritone [Nettuno].
Il suo diametro medio è di 2376,6 km, ovvero circa il 68% di quello della Luna.
La superficie è composta per oltre il 98% di ghiaccio d’azoto, monossido di carbonio e tracce di metano. La temperatura superficiale si aggira tra i 40 e i 50 K. Qui di seguito sono riportati tutti i dati relativi a Plutone:

Semiasse maggiore                         5.906.380.000 Km = 39,4817 UA
Periodo orbitale                               247,9 anni
Velocità orbitale media                  4,669 Km/s
Eccentricità                                      0,2448
Inclinazione sull’eclittica               17,13826°
Temperatura superficiale media  45 K (-228,2 °C)
Periodo di rotazione                        6g 9h 17min 36 s
Diametro medio                               2376,6 km
Massa (Terra = 1)                            0,00218
Densità media                                 2,5 ⋅
Gravità superficiale (Terra = 1)   0,063
Satelliti naturali                              5.

Plutone possiede 5 satelliti naturali conosciuti, il più massiccio e importante dei quali è certamente Caronte.
Scoperto il 22 giugno 1978 e avente un raggio poco più della metà di quello di Plutone, è l’unico dei satelliti in equilibrio idrostatico e dalla forma sferica. Sono noti anche 4 satelliti minori: Notte e Idra, scoperti nel maggio 2005; Cerbero, scoperto nel luglio 2011 e Stige, scoperto nel luglio 2012.
Caronte possiede dimensioni non molto inferiori a Plutone; alcuni preferiscono quindi parlare di un sistema binario, giacché i due corpi orbitano attorno a un comune centro di gravità situato all’esterno di Plutone. Nell’Assemblea Generale UAI (Unione Astronomica Internazionale) dell’agosto del 2006 venne presa in considerazione la proposta di riclassificare Plutone e Caronte come un “pianeta doppio”, ma la proposta fu poi abbandonata.
Caronte ruota su se stesso con un movimento sincrono in 6,39 giorni, presentando sempre la stessa faccia a Plutone, come la Luna con la Terra.
Tuttavia, a differenza della Terra, il blocco mareale vale anche per Plutone che rivolge quindi anch’esso il medesimo emisfero a Caronte, unico caso nel sistema solare dove anche il corpo principale è in rotazione sincrona col suo maggior satellite; da qualsiasi posizione della superficie di ciascuno dei due corpi, l’altro rimane fisso nel cielo oppure perennemente invisibile.
Idra è il satellite più esterno del sistema e sembra essere il maggiore dei 4 nuovi satelliti. Stige è la più piccola luna del sistema plutoniano, avendo un diametro compreso tra i 10 e i 25 km.
Da Plutone, il Sole appare puntiforme, anche se ancora molto luminoso, da 150 a 450 volte più luminoso della Luna piena vista dalla Terra (la variabilità è dovuta al fatto che l’orbita di Plutone è altamente eccentrica).
Caronte visto dalla superficie di Plutone ha un diametro angolare di circa 3,8°, quasi otto volte il diametro angolare della Luna vista dalla Terra. Appare come un oggetto molto grande nel cielo notturno, ma risplende circa 13 volte meno della Luna, a causa della poca luce che riceve dal Sole.
Pianeta nano.
Dopo la scoperta di Plutone, nel 1930, gli astronomi avevano stabilito che il sistema solare contenesse nove pianeti e migliaia di altri corpi dalle dimensioni significativamente minori, asteroidi e comete. Per quasi 50 anni, Plutone è stato ritenuto più grande di Mercurio, ma la scoperta nel 1978 della sua luna Caronte permise di misurarne la massa con precisione, ottenendo per essa un valore molto più piccolo delle stime iniziali: il valore misurato corrispondeva a circa un ventesimo della massa di Mercurio, rendendo Plutone di gran lunga il pianeta più piccolo. Sebbene fosse ancora 14 volte più massiccio di Cerere, l’oggetto più grande presente nella fascia principale degli asteroidi, anche dal confronto con la Luna Plutone appariva ridimensionato, raggiungendone meno del 18% della massa. Inoltre, possedendo alcune caratteristiche inusuali quali un’elevata eccentricità orbitale e un’elevata inclinazione orbitale, divenne evidente che si trattava di un corpo differente da ogni altro pianeta.
Fra il 2002 e il 2005 furono scoperti 8 oggetti che condividevano le caratteristiche chiave di Plutone.
Il termine “pianeta nano” è stato introdotto ufficialmente nella nomenclatura astronomica il 24 agosto 2006 da un’assemblea dell’UAI, fra molte discussioni e polemiche. Nella risoluzione si legge:
“[…]  La UAI quindi decide che i pianeti [dal greco “plànētes” = errante] e gli altri oggetti nel nostro sistema solare, eccetto i satelliti, siano classificati in tre categorie distinte nel modo seguente:

un “pianeta” è un corpo celeste che

è in orbita intorno al Sole;
ha una massa sufficiente affinché la sua gravità possa vincere le forze di corpo rigido, cosicché assume una forma di equilibrio idrostatico (quasi sferica);
ha ripulito le vicinanze intorno alla sua orbita;

un “pianeta nano” è un corpo celeste che:

è in orbita intorno al Sole;
ha una massa sufficiente affinché la sua gravità possa vincere le forze di corpo rigido, cosicché assume una forma di equilibrio idrostatico (quasi sferica);
non ha ripulito le vicinanze intorno alla sua orbita;
non è un satellite.

tutti gli altri oggetti, eccetto i satelliti, che orbitano intorno al Sole devono essere considerati in maniera collettiva come “piccoli corpi del sistema solare”.

Nonostante il nome, un pianeta nano non è necessariamente più piccolo di un pianeta. In teoria non vi è limite alle dimensioni dei pianeti nani. Si osservi inoltre che la classe dei pianeti è distinta da quella dei pianeti nani, e non comprende quest’ultima.
L’UAI riconosce cinque pianeti nani: Cerere, Plutone, Haumea, Makemake ed Eris.
Cerere era il più grande degli asteroidi, ha un diametro medio di appena 955 km e fu il primo di questi pianetini ad essere scoperto nel 1801 da Giuseppe Piazzi (1746 – 1826), direttore dell’Osservatorio di Palermo. Carl Friedrich Gauss (1777 – 1855) calcolò la sua orbita con il metodo dei minimi quadrati.
Haumea è stata scoperta nel 2004 e Makemake nel 2005.
Eris, scoperta nel 2005, ha un diametro medio di 2326 km ed una massa 1,28 volte quella di Plutone; è il pianeta nano più distante dal Sole, avendo un semiasse maggiore di 68,071 UA. Deve il suo nome ad Èris, sorella di Ares, chiamata dai Romani Discòrdia, che accompagna il fratello nelle battaglie e personifica la discordia.
I seguenti oggetti del sistema solare potrebbero essere classificati, in base alla definizione, come pianeti nani, sebbene l’UAI si riservi di decidere in futuro se includerli o meno nella lista ufficiale. Fra parentesi è data per ciascuno la data di scoperta:
Gonggong (2007), Quaoar (2002), Sedna (2003), Orco (2004), 2002 (2002) e Salacia (2004).
L’elenco dei 6 candidati pianeti nani è stato fatto in base al diametro medio decrescente: dai 1290 Km di Gonggong ai 921 km di Salacia. Il più vicino al Sole è Orco (39,173 UA; periodo orbitale 247,492 anni); il più distante Sedna (524,400 UA; periodo orbitale 12059,06 anni).
Epilogo (non troppo serio).
Il nostro amico Plutone siede da solo ad un piccolo tavolo nel piccolo “Bar del pianeta nano”, dove ambrosia e nettare sono sconosciuti e i camerieri, quando lui entra nel locale, fanno i debiti scongiuri.
Pensa con rimpianto ai bei tempi in cui regnava sulle ombre di gente come Patroclo, Ettore, Achille, Priamo, Agamennone, Cassandra, Leonida e i suoi 300 compagni, Alessandro Magno.
Pensa pure a quando, dopo un lunghissimo letargo, era diventato per soli 76 anni il nono pianeta del sistema solare. Ora è solo un pianeta nano e in che compagnia si ritrova!
Per prima sua suocera Cerere, che lo ha sempre odiato; poi c’è quell’attaccabrighe di Èris, impegnata a seminar zizzania e sempre smaniosa di menare le mani (ed anche un po’ più grossa di lui). C’è poi quella coppia di sconosciuti dagli strani nomi, Haumea e Makemake, che se ne stanno sempre per i fatti loro e non danno confidenza a nessuno.
Plutone pensa, pensa e una lacrima scende sulle barbute guance dell’antico dio. Certo, è proprio caduto in basso: solo un ripensamento di quella dannata UAI potrebbe un giorno farlo tornare un pianeta “normale”, magari “doppio” in coppia col vecchio amico Caronte.
“Méllonta taúta?” [è l’equivalente in greco di “Ça ira?”]: non lo so, ma mi farebbe veramente piacere se accadesse.

Domenico Bruno (Catania 1941). Laureato in Fisica. Già Docente di Matematica e Fisica nei Licei. Dal 1983 Dirigente Superiore per i Servizi Ispettivi del Ministero dell’Istruzione.

Visualizza tutti gli articoli

Leopardi e la fisica del suo tempo

In Giacomo Leopardi adolescente l’eco delle principali questioni fisiche e matematiche dibattute dai grandi della scienza a lui contemporanei.
Giacomo Leopardi (1798- 1837)
L’articolo di Matmedia “Leopardi fisico e matematico” propone una riflessione sulla formazione scientifica di Giacomo Leopardi,  formazione che avrà un ruolo fondamentale nel suo pensiero filosofico e influenzerà la sua poetica.
Le prime opere adolescenziali denotano grande erudizione ma anche capacità di sintesi e senso critico nelle argomentazioni. Ricordiamo, in proposito, le Dissertazioni filosofiche, comprendenti anche dieci  argomenti di fisica, scritte tra il 1811 e il 1812 ossia all’età di 13 e 14 anni  e la Storia dell’astronomia, scritta un anno più tardi.
Il suo talento precoce era favorito e  stimolato culturalmente dal padre Monaldo, molto esigente  riguardo all’istruzione dei figli e, nonostante le sue idee conservatrici, sempre pronto ad aggiornare  la sua biblioteca accogliendo le  novità in campo scientifico e filosofico
Giacomo e i suoi fratelli potevano  disporre, inoltre, di un piccolo laboratorio per gli esperimenti scientifici. “Studio matto e disperatissimo” da parte dell’adolescente,  ma anche  interesse per la conoscenza del mondo fisico, della Natura, del Cosmo  e grande fascino esercitato su di lui dai grandi scienziati  quali Copernico, Keplero, Galileo  e, soprattutto, Newton.
L’attenzione ai contributi scientifici  negli scritti  di Leopardi, da parte dei critici o interpreti, risale alla seconda metà  del secolo scorso.
Alcune intuizioni da parte di  Italo Calvino nelle “Lezioni americane” e i continui riferimenti alle “Operette morali” nelle sue “Cosmicomiche”, mettono in luce la consapevolezza scientifica che sta alla base di alcune immagini o riflessioni leopardiane, solitamente analizzate dal punto di vista stilistico o nel loro significato filosofico,
Walter Binni, uno dei maggiori studiosi della poetica e del pensiero di Giacomo Leopardi, ne suggerisce un “habitus  mentale” di derivazione scientifica  affermando che: «L’illuminismo fu non solo fornitore a Leopardi di materiali e stimoli filosofici e morali, ma scuola di coraggio della verità, di bisogno di estrema chiarificazione, di lucidità ad ogni costo sulla via del suo attivo pessimismo».
In  occasione della celebrazione del bicentenario della nascita del poeta  (nel 1998) e, qualche decennio più tardi, nel bicentenario  dell’infinito (nel 2019) si assiste sia  a una riscoperta e una valorizzazione dei saggi  di carattere scientifico del giovane Leopardi, sia a una rilettura in chiave moderna delle opere della sua maturità.
Secondo Pietro Greco, giornalista e divulgatore scientifico scomparso due anni fa,
«…L’evoluzione del rapporto tra Leopardi e la scienza si muove con velocità differenziali e direzioni diverse lungo almeno quattro direttrici, certo interconnesse, ma abbastanza autonome da poter essere individuate con una certa precisione…» (Città della scienza /centro studi/Leopardi-e-la-scienza-16 agosto 2016)
Le quattro direttrici di cui parla Greco possono essere ricondotte facilmente ad alcune tematiche di indubbia attualità:

Valore sociale della scienza
Esaltazione della ragione e del rigore scientifico per spiegare i fenomeni
Ricerca del “ senso del mondo”, percezione della complessità del reale
Sfiducia nel meccanicismo e rifiuto del riduzionismo intrinseco nella scienza

Nel saggio “L’infinita scienza di Leopardi”( 2019), gli autori (Giuseppe Mussardo , professore ordinario di Fisica Teorica alla SISSA di Trieste e Gaspare Polizzi, storico della filosofia e della scienza del Centro nazionale studi leopardiani) concentrano le loro riflessioni su tre temi fondamentali :

Leopardi e il cielo
Leopardi e la materia
Leopardi e l’infinito

ricollegabili facilmente agli studi di astronomia, chimica e fisica.
A  questo punto è opportuno osservare che, se è decisamente interessante  affrontare la poetica e il pensiero di Leopardi alla luce della sua formazione scientifica, altrettanto stimolante  potrebbe essere cogliere nelle opere di  Giacomo adolescente l’eco dei principali dibattiti degli scienziati a lui contemporanei e  pensare a un approccio  originale alla storia della fisica e della chimica.
A  partire dalle curiosità e dai  commenti di un giovane studente  meticoloso e tenace, brillante e desideroso di apprendere, possiamo riflettere sul  panorama scientifico  degli anni di passaggio dal XVIII a XIX secolo e su come venissero  affrontati alcuni temi significativi.
Senza aver la pretesa di una trattazione esaustiva, proponiamo due tematiche  abbastanza ampie  che saranno in seguito approfondite, con spirito specialistico, dagli scienziati  XIX secolo:

la struttura della materia e le sue proprietà
la questione copernicana

La struttura della materia e le sue proprietà
Da: Casa Leopardi, Giacomo e la Scienza, 1996
Dalla lettura delle 10 disertazioni di argomento scientifico 

Dissertazione sopra l’attrazione
Dissertazione sopra la gravità
Dissertazione sopra l’urto dei corpi
Dissertazione sopra l’estensione
Dissertazione sopra l’idrodinamica
Dissertazione sopra i fluidi elastici
Dissertazione sopra la luce
Dissertazione sopra l’astronomia
Dissertazione sopra l’elettricismo

emerge il modello di realtà che  Giacomo si era costruito e il quadro concettuale unitario entro cui articola  le spiegazioni dei fenomeni naturali.
Si tratta di esercitazioni scolastiche preparate per il saggio annuale con cui  Monaldo Leopardi era solito far concludere gli  studi dei tre figli, Giacomo, Carlo e Paolina.
Il tono è esplicativo, le argomentazioni puntano sulla citazione di fonti autorevoli o sull’evidenza sperimentale.
La fiducia nella forza della Ragione, la fedeltà  al modello  meccanicistico della realtà, il “culto” della figura di Newton, contrastano, agli occhi del lettore moderno, con alcune convinzioni che sarebbero state a breve superate dalle nuove scoperte e dai  mutamenti di carattere metodologico e filosofico che avrebbero caratterizzano il  secolo XIX . Eppure ci sentiamo trascinati dall’entusiasmo del giovane  conferenziere e seguiamo le sue dissertazioni e i suoi ragionamenti, riscontrando con piacere  alcuni sprazzi di modernità.
Del resto, anche tra gli scienziati dell’inizio del secolo si poteva riscontrare un certo disorientamento di fronte alla molteplicità e alla complessità dei risultati ottenuti, in particolare, in elettrochimica,  in elettromagnetismo e in ottica . Spesso  si cercava una spiegazione riconducibile ai vecchi modelli e, anche se venivano enunciate nuove leggi,  non si arrivava a ideare una teoria ampia e dal potere unificante . Solo nella seconda metà del secolo si avrà la sistemazione della termodinamica e l’elaborazione della teoria dei campi. Per una teoria atomica, nell’ambito della fisica classica, si dovrà aspettare il XX secolo.
Nella Dissertazione sull’estensione si legge:
«…Viene altresì annoverata tra le proprietà dei corpi appartenenti alla loro estensione la Divisibilità. Ciascun corpo è formato di particelle, e di molecole unite insieme per mezzo dell’affinità d’aggregazione, di cui sono dotate. Essi sono dunque divisibili, cioè le particelle possono essere slegate, e scomposte, le quali particelle essendo formate di altre molecole ancor più sottili possono anch’esse per conseguenza esser divise. Infatti, noi non possiamo immaginarci un corpo sebben minimo, nel quale non supponiamo due metà, e per conseguenza può senza dubbio affermarsi esser la materia divisibile in infinito numero di parti infinitamente picciole. Deve avvertirsi, che noi non intendiamo di dire che un corpo sia divisibile in infinito fisicamente, ma soltanto geometricamente, e per mezzo de’ voli astratti dell’umana immaginazione».
«Moltissimi sono quegli esperimenti, con i quali vollero i Fisici dimostrare la Divisibilità dei corpi in modo evidentissimo. Tra questi ell’è utilissima l’osservazione riportata dal celebre Poli circa i raggi della luce, poiché “quantunque, com’egli si esprime, siffatti lumi non decidano se il campo assegnato alla rapportata Divisione si estenda all’infinito, nulladimeno ci mostrano ad evidenza, che la materia è capace di esser divisa in un numero di parti così immenso, che giugne fino a stancare la più vivace immaginazione….
Se in una notte serena, segue il mentovato Scrittore, pongasi a cielo aperto una candela accesa, diffonderà questa tanta luce, che si potrà agevolmente scorgere fino alla distanza di due miglia ossìa di 10 mila piedi tutt’all’intorno. È noto presso de’ Matematici, che uno spazio sferico, che abbia il semidiametro di 10 mila piedi in se contiene 4. bilioni 190 mila 40 e più milioni di piedi cubici. … »
Compare poi in una nota la seguente precisazione
(1) I principj della moderna Chimica dimostrano che la luce, e la fiamma non si sviluppano dal corpo che brucia ma bensì dall’aria vitale allorché l’ossigeno passa nel combustibile insieme con il calorico, e con la luce, con cui era unito, e che abbandonando l’aria vitale, si svolgono, e formano il fuoco.
L’esempio è tratto   da un testo famoso e apprezzato, gli  Elementi di fisica sperimentale (1798) di Giuseppe Saverio Poli e Vincenzo Dandolo, aggiornato sugli ultimi risultati di Lavoisier ma legato inevitabilmente ai modelli  settecenteschi del fluido calorico e dei corpuscoli che stanno a fondamento dei fenomeni luminosi.
Il  concetto di affinità tra le molecole è affrontato in modo generico, come si evince anche dalle dissertazioni sull’attrazione e sulla gravità.
In particolare, vogliamo soffermarci su alcune affermazioni del giovane saggista  riguardo l’interazione gravitazionale, accomunata disinvoltamente ad altre  forze di natura attrattiva, come le forze di adesione o di coesione molecolare.
Affermazioni quali:«…non ha solamente luogo  tra i corpi celesti, considerati l’uno relativamente all’altro. Questa forza agisce altresì in tutte le parti della materia. I liquori si alzano nei tubi capillari al di sopra del loro livello a causa dell’attrazione del tubo….»   non sono, come potrebbe  sembrare,   frutto di un ingenuo fraintendimento da parte del giovane studioso, bensì rispecchiano la convinzione, in quel tempo abbastanza diffusa negli ambienti scientifici, che l’attrazione fosse una proprietà della materia e che si manifestasse, oltre che nella gravitazione,  in molti altri  fenomeni di interazione fra corpi  solidi o fluidi o anche tra corpuscoli dotati di massa.
Interessante è il confronto tra le  dissertazioni di Giacomo  e alcuni  brani tratti dalla Storia dell’astronomia dell’astronomo  Jean-Silvain Bailly ridotta in compendio da  Francesco Milizia ( 1791), uno dei testi  su cui Giacomo aveva studiato.
L’autore sembra abbastanza deciso nell’identificare le forze  di attrazione tra molecole e l’attrazione gravitazionale
«Le affinità chimiche, le dissoluzioni, le precipitazioni, le coagulazioni non sono che attrazioni. Queste molecole esercitano a piccole distanze proporzionalmente alle loro masse un’attrazione simile a quella che i globi celesti esercitano negli spazi dell’Universo a distanze enormi…».
«La causa della coesione è l’attrazione o sia la gravità; e siccome la coesione è più o meno in tutti i corpi, Newton con ragione ha conchiuso che la gravità è universale in tutte le parti della materia»
Ribadisce la spiegazione «gravitazionale» che  Newton fornisce per il fenomeno della rifrazione della luce:
«La luce s’inflette passando presso i corpi per l’attrazione che prova e la devia. Passando da un mezzo ad un altro più denso si refrange, va più veloce poiché vi è più attratta»
L’autorità del paradigma newtoniano è ancora molto solido negli ambienti scientifici del primo ‘800.
Sviluppatosi principalmente come empirismo in Inghilterra e come razionalismo in Francia.  aveva alimentato la convinzione che il modello meccanicistico fosse in grado di descrivere e studiare tutti i fenomeni naturali.
La legge di gravitazione universale, in particolare, con il suo potere unificante,  resta il modello da seguire, almeno per analogia,  nell’interpretare  fenomeni in cui intervengono mutue forze attrattive tra  corpi, dipendenti dalla loro distanza.
Come si può osservare nelle affermazioni di Bailly, l’indiscussa  autorità degli scritti newtoniani poteva arrivare a far interpretare in modo acritico, e in parte errato, il suo pensiero.
Newton è molto più cauto nell’estendere la legge di gravitazione universale  al di fuori della meccanica, anche se, in effetti, per  quanto riguarda l’ottica, pensava che la  rifrazione potesse essere  ricondotta ad un fenomeno di attrazione tra masse,  avvalorando  la sua ipotesi corpuscolare sulla natura della luce.
Se  avesse avuto l’opportunità di anticipare i risultati ottenuti nel 1850 da  Fizeau e Foucault  relativamente alla  velocità della luce, avrebbe osservato che questa è maggiore nel vuoto che non  in un mezzo materiale e sarebbe giunto ad altre conclusioni.
Il pensiero di Laplace  (Exposition du système du monde-1823)  appare invece molto più lucido e più vicino  alla posizione newtoniana ( Hypotheses non fingo)
«L’attrazione sparisce tra i corpi di una grandezza poco considerevole: essa riappare nei loro elementi sotto un’infinità di forme. La solidità, la cristallizzazione, la rifrazione della luce, il sollevamento e l’abbassamento dei liquidi negli spazi capillari, e in generale tutte le combinazioni  chimiche sono il risultato di forze la cui conoscenza è uno dei principali obiettivi dello studio della natura. Così la materia è soggetta all’impero di diverse forze attrattive: una di esse, estendendosi indefinitamente nello spazio, regge i movimenti della terra e dei corpi celesti; tutto ciò che riguarda la costituzione intima delle sostanze che li compongono dipende principalmente dalle altre forze la cui azione è sensibile solo a distanze impercettibili. E’ quasi impossibile, per questa ragione, conoscere le leggi della loro variazione con la distanza; fortunatamente, la proprietà di essere sensibili soltanto assai vicino al contatto basta per sottomettere all’Analisi un gran numero di fenomeni interessanti che ne dipendono».
L’opera di Laplace è del 1823.
L’invenzione della  pila di Volta aveva  indicato nuove vie di ricerca sull’elettricità. Nel 1808  il chimico inglese  sir Humpry Davy aveva ottenuto i primi risultati di dissociazione elettrolitica .
La comunità scientifica francese era  fortemente influenzata dal programma laplaciano, tendente a spiegare i fenomeni fisici a partire dalle proprietà di fluidi imponderabili (fluido elettrico vetroso o resinoso, fluido magnetico australe o boreale, calorico ecc. ecc.)  le cui particelle ultime  interagivano a distanza, tramite forze di tipo newtoniano.
La formalizzazione  poteva avvenire nell’ambito dell’apparato matematico che già aveva  segnato l’indiscusso progresso della meccanica e dell’astronomia.
Le esperienze di Cavendish e di Coulomb, mediante la bilancia di torsione, avevano dimostrato, già alla fine del ‘700,  l’analogia tra le leggi che descrivono le interazioni gravitazionali, elettrostatiche e magnetiche.
L’interazione corrente-magnete scoperta da  Oersted  nel 1820 sembrava invece difficilmente riconducibile allo schema newtoniano e questo  aveva costituito una vera e propria sfida  tra gli scienziati francesi, di cui sono noti gli importanti risultati,  sia sperimentali sia nella formalizzazione matematica ( esperienza di Arago, leggi di Ampère, di Biot-Savart e dello stesso Laplace).
Ormai è ben nota la differenza tra le varie forze di interazione conosciute, sia per quanto riguarda la natura delle particelle interagenti, sia  dal punto di vista dell’intensità delle forze.
Qualsiasi studente liceale sa, per esempio , che  l’attrazione  gravitazionale tra un protone e un elettrone è molto più  debole , di circa 40 ordini di grandezza, dell’interazione elettrostatica, la quale svolge , pertanto, un ruolo essenziale  nella struttura microscopica della materia.
Agli inizi del secolo  XIX,  invece ,  in assenza di opportune  valutazioni quantitative e  di conoscenze adeguate sulla struttura della materia, le interazioni tra particelle dotate di massa venivano assimilate alle interazioni  gravitazionali.
Va precisato, in proposito, che, sebbene  comunemente si attribuisca a Cavendish la determinazione della costante  di gravitazione  universale, la formulazione  moderna della legge  di  Newton è entrata nella letteratura scientifica solo  nelle seconda metà secolo.
I risultati del  noto esperimento di Cavendish furono formulati, invece, in funzione del valore della densità media  della Terra, ovvero del valore della sua massa, dedotto dal  rapporto delle forze esercitate, rispettivamente, dalla Terra e dalla massa “grande” utilizzata nell’esperimento, su una stessa massa, la massa  “piccola”  posta a distanza  da essa.
Ricordiamo, infine l’approccio innovativo da parte  di Faraday, che, rifiutando il modello delle particelle di fluido interagenti a distanza, spostò l’attenzione sulle proprietà dello spazio, sede dei fenomeni elettromagnetici, il quale  diventa «campo di forze». Le sue  proprietà sono descritte  dalle linee di forza o linee di campo, secondo  un modello che sarà poi formalizzato, dal punto di vista matematico, nella sintesi maxwelliana.
Ovviamente non possiamo aspettarci che, nella dissertazione sull’elettricismo, il giovane Giacomo possa conoscere o immaginare l’importanza che i fenomeni elettrici avrebbero acquistato  in campo scientifico, tecnologico e industriale.
La dissertazione spazia pertanto nel campo meteorologico ( pioggia, fulmine, terremoto, tromba d’aria ecc. ecc.) .
Le spiegazioni dei fenomeni  mostrano i limiti del modello del fluido elettrico che non riesce a suggerirne in modo esauriente l’origine e la natura, anche se  fornisce alcune indicazioni per  difendersi da  eventuali effetti dannosi.
La conclusione sembra un tentativo di dare maggiore dignità all’argomento:
«Tutto ciò, che abbiam detto contiene in brevi parole l’intera Teoria dell’elettricità. Non possiamo al certo bastantemente encomiare quei Fisici, i quali impiegar seppero i loro lumi nel discuoprire la cagione, e l’origine di sì spaventosi fenomeni per poi dar campo alle ricerche intorno al modo di preservarsi da loro terribili effetti. Non si scorgerebbe certamente nelle Fisiche dottrine un sì gran numero d’inutili questioni se tutti i Filosofi impiegar sapessero la loro scienza nella ricerca soltanto di quelle cose, che ridondar possono in qualche modo a pro del genere umano. > >
La consapevolezza della rilevanza del progresso degli studi sui fenomeni elettrici traspare invece in una delle ultime poesie di Leopardi: la “ Palinodia al Marchese Gino Capponi” (1835).
Le moderne applicazioni dell’’elettricità, citata attraverso gli epigoni Volta e Davy , non riescono a vincere le forze inevitabili dell’egoismo umano.
L’entusiasmo e la fiducia nel valore sociale della Scienza ha lasciato il posto alla delusione e al pessimismo di fronte a una società che insegue il mito del progresso  dimenticando però gli ideali di  verità e di giustizia.
…………..Ardir protervo e frode, Con mediocrità, regneran sempre, A galleggiar sortiti. Imperio e forze, Quanto più vogli o cumulate o sparse, Abuserà chiunque avralle, e sotto Qualunque nome. Questa legge in pria Scrisser natura e il fato in adamante; E co’ fulmini suoi Volta nè DavyLei non cancellerà, non Anglia tutta Con le macchine sue, nè con un Gange Di politici scritti il secol novo. Sempre il buono in tristezza, il vile in festa Sempre e il ribaldo: incontro all’alme eccelse In arme tutti congiurati i mondi Fieno in perpetuo: al vero onor seguaci Calunnia, odio e livor: cibo de’ forti Il debole, cultor de’ ricchi e servo Il digiuno mendico, in ogni forma Di comun reggimento, o presso o lungi Sien l’eclittica o i poli, eternamente Sarà, se al gener nostro il proprio albergo E la face del dì non vengon meno…… > >
 La questione copernicana
 Ha senso parlare ancora, ai tempi di Leopardi , di una questione copernicana?
Quando il giovanissimo Giacomo affrontava  gli studi di astronomia,  la teoria eliocentrica era già consolidata in ambito scientifico, accettata anche da scienziati cattolici o luterani . La Chiesa cattolica  però, non aveva ancora abrogato il Decreto della Congregazione dell’Indice del 1616, cosa che avvenne  qualche decennio più avanti  con la riabilitazione di tutte le opere di ispirazione copernicana.
In alcuni ambienti cattolici particolarmente intransigenti c’era , pertanto, una certa cautela  nell’insegnare  o propagandare il sistema copernicano come modello della realtà fisica, in accordo con la  prefazione del De revolutionibus orbium coelestium   ( rivelatasi in seguito apocrifa e attribuita al teologo  luterano  Andrea Oslander ) che parlava di “ipotesi matematica”.
Lo stesso Monaldo Leopardi continuò a dichiararsi anticopernicano convinto, fino a sfidare la Chiesa dalle pagine del periodico “La voce della ragione “ , da lui diretto, difendendo, da un lato, le decisioni dell’Inquisizione romana e , dall’altro,  cercando di demolire con argomentazioni di carattere scientifico  le prove sperimentali addotte dai sostenitori del sistema eliocentrico.
Si comprende pertanto  perchè nella Dissertazione sull’Astronomia, uno dei componimenti scolastici presentati nei saggio annuale  di casa Leopardi nel 1812, il giovane Giacomo tesse le lodi del sistema copernicano “il più ammissibile fra tutti i sistemi celesti” ma aggiunge nel finale la seguente riflessione:

L’ambiguità della posizione della Chiesa Cattolica fece scalpore, anche in campo internazionale,  quando, nel 1818 il Maestro del Sacro Palazzo negava al canonico Settele ,docente alla Sapienza di Roma,  l’imprimatur  per il secondo volume del trattato  “Elementi di ottica e astronomia” in quanto fondato sul sistema copernicano.
Il Santo Uffizio fu costretto a intervenire con un apposito  decreto ( nel 1822) e avviare un processo di riabilitazione di tutte le opere  di ispirazione copernicana che si concluse nel 1835, sotto il papato di Gregorio XVI.
Appena un anno dopo la Dissertazione , Giacomo completa la sua  “Storia dell’astronomia”  nella quale  l’adesione al copernicanesimo è  più decisa , tra l’entusiasmo di spirito illuminista per la forza della Ragione e il riconoscimento dell’esistenza di un  Dio «autore e regolatore  dell’ammirevol macchina dell’Universo».
Il  progresso dell’astronomia  si trasforma nello strumento che libera l’uomo dalle  superstizioni e dalle credenze errate e lo conduce alla civiltà e alla vera Sapienza, mentre le implicazioni di carattere  filosofico sembrano restare in secondo piano.
I riferimenti alle dispute intorno alla pluralità dei mondi e all’abitabilità dei corpi extraterrestri dimostrano, comunque,  che Giacomo aveva ben recepito i punti salienti e anche  i nodi di questo secondo aspetto della nuova questione copernicana. Con molta franchezza, infatti,  conclude che sono tutte discussioni inutili e oziose, dalle quali non è possibile «ritrarre il minimo frutto». La controversia infatti non potrà «mai venire alla conclusione», essendo questa «la più insolubile di tutte le questioni».
Il rifiuto  dell’antropocentrismo, un tempo tacciato di eresia, ben si conciliava invece  con lo spirito egualitario degli Illuministi.
Le  intuizioni di Giordano Bruno   sulla pluralità e infinità dei mondi,  giudicate  a suo tempo  inverosimili e diaboliche, avevano acquistato una base di credibilità, almeno a livello di possibilità.
Pur riconoscendone l’infondatezza  sia al livello sperimentale, sia dal punto di vista  speculativo,   queste idee erano patrocinate dai più eminenti astronomi del XVIII secolo, incontrati da  Giacomo nei libri della biblioteca paterna   (Lalande, Bailly, William Herschel) .  La forza dell’analogia, l’inconsistenza di una situazione privilegiata da assegnare alla terra ( unita alla mancanza di nozioni sulla genesi della materia vivente) sembrano punti a favore dell’esistenza di altre forme di vita o di altri sistemi solari simili al nostro .
Non mancavano  poi alcune opere di fantasia come l’ironico Micromega di Voltaire  o di divulgazione scientifica, come I Colloqui sulla pluralità dei mondi ( 1686 ) di Bernard le Bovier de Fontenelle e il poema  dai toni preromantici “ Complaint or night thoughts on life , death and immortality” (1742-45),del poeta ecclesiastico  inglese Edward Young.
Quest’ultimo, di cui Leopardi conosceva probabilmente la traduzione italiana di L.A. Loschi, vede  nella pluralità dei mondi e nell’infinità dell’universo la testimonianza dell’infinita onnipotenza di Dio  Creatore che non può  rimanere limitata nell’angusto  spazio del nostro pianeta.
Copernico continua poi ad essere presente in più punti della produzione leopardiana,  a prova del fatto che le letture giovanili  avevano avviato un processo di interiorizzazione,  sfociata poi  nel  pensiero filosofico e  nella sublime arte poetica.
«Una prova di quanto influiscano i sistemi puramente fisici sugl’intellettuali e metafisici, è quello di Copernico che al pensatore rinnova interamente l’idea della natura e dell’uomo concepita e naturale per l’antico sistema detto Tolemaico; rivela una pluralità di mondi, mostra l’uomo un essere non unico, come non è unica la collocazione, il moto e il destino della terra, ed apre un immenso campo di riflessioni, sopra l’infinità delle creature che secondo tutte le leggi d’analogia debbono abitare gli altri globi in tutto analoghi al nostro, e quelli anche che saranno, benchè non ci appariscano, intorno agli altri soli cioè le stelle, abbassa l’idea dell’uomo, e la sublima; scuopre nuovi misteri della creazione, del destino della natura, della essenza delle cose, dell’esser nostro, dell’onnipotenza del creatore, dei fini del creato ec. ec. »(Zibaldone, 84, 18209)
«Il sistema di Copernico insegnò ai filosofi l’uguaglianza dei globi checompongono il sistema solare (uguaglianza non insegnata dalla natura,anzi all’opposto), nel modo che la ragione e la natura insegnavano agliuomini ed a qualunque vivente l’uguaglianza naturale degl’individui diuna medisima specie». (Zibaldone, 975, 22 aprile 1821) (28).E’ noto il divertente dialogo “Copernico” delle Operette morali in cui la rivoluzione  copernicana nasce da una esigenza  del Sole che chiede a Copernico di concedergli il meritato riposo e di  costringere l’oziosa Terra a mettersi in movimento.
Forse  è meno noto questo brano  della storia dell’astronomia di cui il “Copernico” sembra essere lo sviluppo e l’ approfondimento:
«Quell’ardimentoso Prussiano che fe’ man bassa sopra gli epicicli degli antichi e spirato da un nobile estro astronomico, dato di piglio alla terra, cacciolla lungi dal centro dell’Universo ingiustamente usurpato, e a punirla del suo ozio, nel quale avea marcito, le addossò una gran parte di quei moti, che venivano attribuiti ai corpi celesti, che ci sono d’intorno».
I notissimi versi del “Canto notturno di un pastore errante” composto  tra il 1829 e il 1830 , ci hanno tante volte coinvolto nelle domande senza risposta sul destino e sull’identità dell’uomo
E quando miro in cielo arder le stelle;Dico fra me pensando:A che tante facelle ?Che fa l’aria infinita, e quel profondoInfinito seren ? che vuol dir questaSolitudine immensa ? ed io che sono ?
Quanti di noi le hanno confrontate con le parole di sir John Herschel  (1792 –1871) (matematico e astronomo figlio di William)?
«A quale scopo, scrive dobbiamo supporre che le stelle siano state disperse nell’immensità dello spazio? Non sarà stato senza dubbio per illuminare le nostre notti, oggetto che potrebbe meglio svolgere una luna piu di quanto non farebbe la millesima parte della nostra, né per brillare come uno spettacolo vuoto di senso e di realtà e ci perdiamo in vane congetture. Questi astri sono, è vero, utili all’uomo come punti permanenti ai quali può rapportare tutto con esattezza; ma bisognerebbe aver ricevuto ben poco frutto dallo studio dell’astronomia per poter supporre che   l’uomo sia il solo oggetto delle cure del suo Creatore e per non vedere, nel vasto e sorprendente  apparato che ci circonda, luoghi destinati ad altre razze di esseri viventi».
Un secolo dopo  Hubble enunciava la  legge che confermava  il modello di un universo in espansione, popolato da innumerevoli galassie distinte dalla nostra Via Lattea.
La Terra non è il centro dell’universo, non lo è il Sole, non lo è la Via Lattea.
Nel XX secolo la cosmologia, studio  dell’Universo nella  sua totalità su grandi scale, ormai separata  dall’astronomia, è una scienza osservativa  che non ha abbandonato  i suoi aspetti speculativi.  I tre principi che ne stanno alla base richiamano le antiche dispute dei filosofi  ma  hanno un chiaro significato di ipotesi di lavoro.
Primo assunto è l’isotropia dell’Universo  (principio cosmologico)   complementare all’omogeneità  di tutti i punti di osservazione (principio copernicano).
Si sente la necessità di un terzo principio, il principio antropico:
“I valori osservati delle quantità fisiche o  cosmologiche non sono equiprobabili ma sono  limitati  dal prerequisito che l’universo cui danno luogo, a un certo punto della sua storia, permetta l’esistenza di una forma di vita come la nostra, basata sul carbonio” (principio antropico debole di Barrow-Tipler) .
Nuovi interrogativi attendono una risposta: il nostro universo è il risultato di  un’eccezionale coincidenza cosmica o esistano infiniti universi fisici e noi abitiamo in uno di quelli che sono adatti alla vita?

Laureata in matematica, all’Università “La Sapienza” di Roma  . Vincitrice di concorso a cattedra per la classe matematica e fisica, ha  insegnato a Roma nel liceo scientifico  “Cavour” e ha collaborato con la S.S.I.S del Lazio in qualità di insegnante accogliente per i tirocinanti. In pensione dal 2009, ha partecipato al progetto del MIUR “La prova scritta di Matematica degli esami di Stato nei Licei Scientifici: contenuti e valutazione”  . Collabora alle attività di formazione della Mathesis.

Visualizza tutti gli articoli

Vuoi rimanere aggiornato sulle nuove tecnologie per la Didattica e ricevere suggerimenti per attività da fare in classe?

Sei un docente?

soloscuola.it la prima piattaforma
No Profit gestita dai

Volontari Per la Didattica
per il mondo della Scuola. 

 

Tutti i servizi sono gratuiti. 

Associazione di Volontariato Koinokalo Aps

Ente del Terzo Settore iscritta dal 2014
Tutte le attività sono finanziate con il 5X1000