Il robot umanoide che ha imparato a fare il caffè in appena 10 ore

Figure 01 è uno dei robot umanoidi da tenere d’occhio, in futuro, insieme a Optimus, una macchina simile sviluppata da Tesla, l’azienda automobilistica di cui è amministratore delegato Elon Musk.

L’azienda che produce Figure 01 si chiama invece Figure, ed è vicina a chiudere un round di finanziamenti di 500 milioni di dollari guidato da OpenAI e Microsoft, due delle aziende leader nello sviluppo di intelligenza artificiale.

L’IA generativa, capace di comprendere il linguaggio naturale, consente a Figure 01 di agire in base all’ordine che gli è stato dato, vale a dire preparare una tazza di caffé. A questa si aggiunge il machine learning che ha permesso al robot umanoide di maneggiare e infilare delicatamente nella macchina da caffé una piccola capsula. Il tutto attraverso un addestramento di sole 10 ore in cui Figure 01 ha imparato dai suoi sbagli e li ha corretti quando si sono presentati nuovamente.

Figure, azienda con sede

Continua la lettura su: https://video.italian.tech/dossier/robot/il-robot-umanoide-che-ha-imparato-a-fare-il-caffe-in-appena-10-ore/4869/5034/?rss Autore del post: La Repubblica Fonte: https://www.repubblica.it

Articoli Correlati

Coding: OpenAI Codex 2025 e la transizione verso team ibridi

Il nuovo OpenAI Codex presentato il 17 maggio 2025 è un agente di programmazione autonomo integrato in ChatGPT. Si tratta di un sistema di AI avanzato per la scrittura di codice, descritto come l’agente di coding più potente finora disponibile.Indice degli argomenti
Caratteristiche principali di OpenAI Codex 2025Diversamente dal semplice modello di completamento codice lanciato nel 2021 (che aveva lo stesso nome), questa nuova versione di Codex è un “software engineering agent” cloud-based in grado di operare in parallelo su più task di sviluppo. In pratica, Codex funge da “collega virtuale” per gli ingegneri del software, capace di collaborare su compiti complessi e prolungati e non solo di rispondere a domande immediate.Al momento l’azienda americana ha rilasciato Codex in modalità research preview (anteprima di ricerca), inizialmente ai soli abbonati ChatGPT di livello Pro, Team ed Enterprise, con l’intenzione di estenderlo successivamente anche agli utenti Plus ed Edu.Codex opera tramite l’interfaccia di ChatGPT, in particolare attraverso una barra laterale dedicata. L’utente può assegnare un nuovo compito di programmazione descrivendolo in linguaggio naturale e cliccando su “Code” (per far scrivere/eseguire codice) oppure fare domande sul codice cliccando “Ask”. Ogni richiesta viene gestita in modo isolato all’interno di un ambiente cloud sandbox: Codex clona il repository di codice pertinente (tramite integrazione con GitHub) e carica i file in un ambiente virtuale sicuro, configurato per rispecchiare il setup di sviluppo reale dell’utente. All’interno di questa sandbox, Codex può leggere e modificare file, oltre a eseguire comandi (per fare qualche esempio: lanciare test, compilatori o altri tool).Tecnologie e modello alla base di OpenAI CodexDal punto di vista dell’IA, Codex è alimentato dal modello “codex-1”, una variante specializzata del più potente modello di ragionamento di OpenAI o3, ottimizzata specificamente per compiti di ingegneria del software. I ricercatori hanno addestrato questo modello tramite tecniche di Reinforcement Learning su attività di coding reali per produrre codice aderente alle istruzioni fornite e agli standard di stile dei programmatori umani.Una caratteristica chiave del modello è la sua capacità di “auto-correzione”: Codex può iterare sulle proprie soluzioni, ad esempio eseguendo test sul codice generato e continuando a modificarlo affinché tutti i test possano essere eseguiti con successo.Il modello supporta anche un contesto esteso (fino a 192.000 token) per poter gestire codebase molto grandi.In termini di integrazioni tecnologiche, Codex si collega direttamente a servizi come GitHub: l’utente può autorizzare Codex ad accedere ai propri repository, in modo tale che l’agente possa pre-caricare il codice del progetto su cui lavorare.La piattaforma consente di configurare l’ambiente di esecuzione in modo da allinearlo al proprio stack (ad esempio specificando versioni di linguaggi, dipendenze, variabili d’ambiente, ecc.). Inoltre, OpenAI ha introdotto uno speciale file di configurazione denominato AGENTS.md che gli sviluppatori possono inserire nel repository: simile a un README, questo file fornisce a Codex linee guida su come navigare il codice, quali comandi usare per build e test, e come aderire alle convenzioni del progetto. Ciò aiuta l’agente a comprendere il contesto applicativo e a comportarsi in modo più conforme alle aspettative del team di sviluppo.Da notare che Codex mantiene un approccio trasparente e verificabile nelle sue operazioni: mentre esegue un task, registra log delle azioni (es. output del terminale, risultati dei test) e li cita nelle sue risposte finali. In questo modo l’utente può ispezionare il processo svolto passo-passo e verificare cosa ha fatto l’agente prima di integrare qualsiasi modifica. Una volta completato un compito, Codex effettua un commit delle modifiche nel suo ambiente virtuale e presenta all’utente un riepilogo delle modifiche effettuate, includendo differenze di codice e risultati dei test per facilitare qualsiasi possibile attività di code review.Funzionalità operative di OpenAI Codex 2025Il nuovo Codex offre un ampio spettro di funzionalità per automatizzare compiti di sviluppo software.Scrittura di nuove funzionalità: dato un requisito in linguaggio naturale, Codex è in grado di implementare codice corrispondente, creando nuovi moduli o funzioni nel progetto. Ad esempio, si può chiedere “implementa la funzionalità X secondo queste specifiche…” e Codex svilupperà il codice necessario (seguendo lo stile del progetto) e lo testerà fino ad assicurarsi che funzioni.Correzione di bug: l’agente può localizzare e risolvere bug nel codice esistente. Si può, ad esempio, indicare “trova e correggi il bug introdotto negli ultimi 5 commit” e Codex analizzerà la cronologia del repository per identificare il problema e proporre una correzione. Durante questo processo, eseguirà i test pertinenti per verificare che il bug sia effettivamente risolto.Answering sul codice (Q&A): Codex può rispondere a domande sul codebase dell’utente. Ciò significa che può fungere da assistente di documentazione: ad esempio si può chiedere “Dove viene calcolata la variabile Y nel progetto?” oppure “Cosa fa esattamente questa funzione?”, e l’agente fornirà spiegazioni basate sul codice, citando i file e le linee rilevanti.Refactoring e miglioramenti del codice: l’agente eccelle in compiti di manutenzione come rifattorizzare porzioni di codice per migliorarne la leggibilità o l’efficienza, rinominare variabili/funzioni per seguire uno standard, eliminare codice duplicato, ecc.. Questi sono compiti “meccanici” che spesso interrompono il flusso di lavoro umano, e Codex può gestirli autonomamente su richiesta.Scrittura ed esecuzione di test: Codex può generare test automatici per il codice (ad esempio creando casi di test per funzioni non ancora coperte) e poi eseguirli. Può quindi aiutare a aumentare la copertura di test e a garantire che nuove modifiche non introducano regressioni. Se qualche test fallisce, l’agente tenterà di correggere il codice fino a farlo passare, oppure segnalerà chiaramente il problema all’utente.Impostazione di workflow CI/CD o strumenti di supporto: come parte delle sue funzionalità, Codex può configurare file di build o pipeline di integrazione continua. Ad esempio, può creare un workflow per eseguire automaticamente l’ESLint ad ogni pull request, bloccare merge che violano le regole di lint, ecc., come mostrato da uno dei task nell’interfaccia Codex. In generale, può occuparsi di compiti infrastrutturali ripetitivi come setup di ambienti, aggiornamento di configurazioni o script di deployment.Proposta di Pull Request e documentazione: una volta completata una modifica, Codex permette di preparare direttamente una pull request con le modifiche proposte, pronta per la revisione umana. Inoltre, può aiutare a redigere documentazione o commenti descrittivi per il codice che ha scritto, facilitando la comprensione da parte del team.La capacità di parallelismo di OpenAI Codex 2025Una caratteristica distintiva di Codex è la sua capacità di gestire più incarichi contemporaneamente (parallelism): l’utente può lanciare diversi task in parallelo (ad esempio, far lavorare l’agente su più bug o su differenti feature allo stesso tempo) e controllarne l’avanzamento simultaneamente. Mentre Codex elabora questi compiti in background (ciascuno isolato nel proprio sandbox), lo sviluppatore può continuare a fare altro e/o utilizzare altri strumenti, senza doversi fermare ad aspettare.Questa esecuzione asincrona e parallela consente di risparmiare tempo e di ridurre i tempi morti: in pratica, Codex può occuparsi di “lavoro noioso” (come potrebbero definirlo molti sviluppatori) mentre la persona può dedicarsi ad attività più creative o critiche.Molto probabilmente l’adozione di un flusso di lavoro multi-agente asincrono, inaugurato da Codex, potrebbe diventare uno standard per la produttività di chi si occupa di ingegneria del software in futuro.Impatto di OPenAI Codex 2025 su team e aziendeIl nuovo Codex è rivolto principalmente a sviluppatori e team di ingegneri che vogliono aumentare la produttività automatizzando compiti ripetitivi o time-consuming.La stessa OpenAI ha raccontato come i propri ingegneri interni abbiano già integrato Codex nel loro toolkit quotidiano per attività come refactoring, scrittura di test, scaffolding di nuove funzionalità e triage di problemi durante il turno di reperibilità. L’obiettivo è permettere ai programmatori umani di concentrarsi sui compiti più creativi e critici, delegando all’IA le parti più meccaniche o che potrebbero interrompere l’attenzione.Naturalmente, oltre ai singoli sviluppatori, Codex è pensato per intere aziende e team software. Durante il periodo di test iniziale, OpenAI ha collaborato con alcune organizzazioni per valutare l’impatto di Codex su codebase e workflow diversi.Casi d’uso aziendaliAd esempio, Cisco ha esplorato l’uso di Codex per accelerare la realizzazione di idee ambiziose da parte dei propri team, fornendo feedback a OpenAI come partner di design.La startup Temporal lo utilizza per velocizzare lo sviluppo di feature, debug e refactoring di grandi basi di codice, sfruttando la possibilità di eseguire task complessi in background così che i loro ingegneri possano rimanere concentrati.L’azienda Superhuman ha impiegato Codex per automatizzare piccoli task ripetitivi (come migliorare la copertura dei test o correggere errori di integrazione), arrivando persino a permettere ai product manager di apportare piccole modifiche al codice (con l’assistenza di Codex) senza coinvolgere direttamente un ingegnere, se non nella fase di code review finale.Kodiak Robotics, nel campo della guida autonoma, ha usato Codex per scrivere strumenti di debug, migliorare la suite di test e rifattorizzare codice, in modo da accelerare lo sviluppo del loro software di guida,In molti, tra l’altro, raccontato come Codex sia diventato anche un prezioso strumento di apprendimento interno, aiutando le persone a capire parti di codice non familiari grazie alla capacità dell’agente di fornire contesto e richiamare modifiche storiche rilevanti.Interessante sottolineare che OpenAI intende rendere Codex accessibile anche a studenti, educatori e ricercatori tramite account ChatGPT Edu. Questo potrebbe aprire le porte a utilizzi in ambito formativo: ad esempio, come assistente nei corsi di programmazione (per aiutare gli studenti a capire e correggere codice) o come strumento per insegnanti che vogliono generare esempi di codice o test automaticamente.Guida pratica all’uso di OPenAI Codex 2025Per utilizzare Codex è necessario avere accesso a ChatGPT con un piano supportato (inizialmente ChatGPT Pro da $200/mese, o un account Team/Enterprise; l’accesso per utenti Plus da $20/mese e per account Edu sarà aggiunto in seguito). All’interno dell’interfaccia web di ChatGPT, gli utenti abilitati vedranno una barra laterale o sezione dedicata a Codex. Prima di iniziare, è consigliabile collegare il proprio account GitHub o fornire a Codex l’accesso al repository di codice su cui dovrà operare, in modo che l’agente possa clonarlo e analizzarlo.Fatto questo, si possono seguire diversi passi:Impostare il contesto: selezionare dall’interfaccia il repository e il branch su cui lavorare (oppure permettere a Codex di clonare un repo pubblico/privato autorizzato). Assicurarsi che il file AGENTS.md sia presente e configurato (opzionale, ma migliora la qualità del risultato) con istruzioni su build/test e convenzioni del progetto.Formulare una richiesta (prompt): nella casella di input di Codex, descrivere in linguaggio naturale il compito da svolgere o la domanda da porre. Esempi di prompt possono essere: “Correggi il bug che causa il crash quando l’utente clicca sul pulsante X”, oppure “Implementa la funzionalità Y seguendo le specifiche Z”, o ancora “Qual è la differenza tra la funzione A e B in questo progetto?”. Una volta scritto il prompt, si clicca “Code” se si tratta di un task operativo, oppure “Ask” se si tratta di una domanda di chiarimento.Esecuzione asincrona: a questo punto Codex avvia il lavoro in background. Nell’interfaccia, l’utente vedrà il task elencato in una lista di attività con uno stato (ad esempio “In esecuzione”). È possibile lanciare ulteriori task nel frattempo. Ogni task viene eseguito isolatamente: Codex carica il codice, analizza il problema, genera eventuale nuovo codice e lo testa. L’utente può monitorare in tempo reale l’avanzamento: ad esempio, vedere log di test che appaiono, o uno stato percentuale di completamento, a seconda di come OpenAI visualizza il progresso. In genere, ogni attività può durare da pochi minuti fino a una mezz’ora circa, a seconda della complessità.Revisione del risultato: quando Codex completa un task, lo stato nell’elenco passerà a “Completato” e l’utente potrà cliccarlo per vedere i dettagli. Codex fornirà:Un riepilogo di cosa ha fatto (es: “Ha identificato che il bug era causato da X e ha modificato Y per risolverlo”).Le differenze di codice (diff) con evidenziate le aggiunte (+) e rimozioni (-) nei file modificati.Gli output di test e log pertinenti, ad esempio indicando “ Tutti i test sono passati” oppure mostrando eventuali errori incontrati. (Vedi immagine sotto per un esempio di schermata di risultato di Codex.)Azioni successive: dopo aver esaminato il lavoro di Codex, l’utente ha varie opzioni. Se il risultato è soddisfacente, può scegliere di integrarlo nel codice base: ad esempio, Codex offre un comando per aprire direttamente una pull request su GitHub con le modifiche effettuate, pronta per il code review umano e il merge. In alternativa, l’utente può scaricare/applicare le patch al proprio repository locale manualmente. Se il risultato non è del tutto soddisfacente, si può chiedere a Codex di apportare revisioni o miglioramenti (ad esempio: “Ottimo, ora applica la stessa correzione anche alla classe correlata XYZ” oppure “Puoi ottimizzare questo algoritmo?”). In ogni momento, l’utente mantiene il controllo: tutte le modifiche di Codex avvengono nel sandbox e nulla viene cambiato nel repository reale finché l’utente non decide di applicarle.OpenAI Codex 2025: limitazioni e considerazioni pratiche Grazie al suo utilizzo, credo sia utile condividere alcune considerazioni pratiche.Essendo un agente autonomo, Codex non sempre avrà successo al primo tentativo su compiti complessi: potrebbe segnalare nei log di non essere certo di una soluzione o di aver incontrato un test fallito. In tali casi, Codex esplicita l’incertezza o l’errore invece di procedere alla cieca, e attende indicazioni dall’utente su come procedere. Ad esempio, potrebbe comunicare: “Alcuni test stanno fallendo; vuoi che provi un approccio diverso o preferisci rivedere tu stesso il codice?”. Ciò garantisce che il programmatore sia coinvolto nelle decisioni critiche e possa intervenire. OpenAI raccomanda comunque agli utenti di revisionare manualmente ogni modifica proposta prima di integrarla definitivamente, come buona pratica di sicurezza e qualità.Per quanto riguarda limitazioni attuali: Codex, essendo in anteprima, non supporta ancora input visivi (ad es. fornire screenshot o GUI per capire problemi di frontend) e non consente di intervenire a metà di un task già in esecuzione (non è possibile “mettere in pausa e correggere” l’agente durante il suo lavoro; bisogna attendere l’esito e poi eventualmente lanciare un nuovo task). Inoltre, delegare un compito a un agente remoto richiede tempi di attesa maggiori rispetto a eseguire modifiche minori a mano; quindi, c’è una curva di adattamento nel lavorare in modo asincrono. Tuttavia, chi ha provato Codex sottolinea che il beneficio di poter parallelizzare attività e di ridurre il contesto da tenere a mente compensa ampiamente questi tempi di attesa.L’evoluzione di OpenAI Codex 2025 rispetto al modello del 2021OpenAI Codex fu inizialmente lanciato nel 2021 come un modello di AI per la generazione di codice basato sul modello GPT-3. Quella prima versione di Codex funzionava principalmente come un motore di autocompletion: l’utente forniva un prompt (es. un commento descrittivo) e il modello restituiva codice corrispondente, eccellendo soprattutto con linguaggi come Python.Quell’iterazione originale ebbe un grande impatto (fu il motore dietro GitHub Copilot), ma presentava anche varie limitazioni: poteva generare codice sintatticamente non corretto, proporre soluzioni solo apparentemente corrette che però fallivano in fase di esecuzione. Inoltre, operava su singole richieste alla volta e non aveva alcuna capacità di “comprendere” davvero il contesto eseguendo o testando il codice – produceva output testuale e bastava.Il Codex 2025 riprende il nome, ma – di fatto – rappresenta un salto generazionale netto rispetto al 2021.Da modello a agente autonomoil Codex originale era un modello di completamento integrato via API/IDE, mentre il nuovo Codex è un vero agente software autonomo. Ciò significa che esegue attivamente operazioni (leggere/scrivere file, eseguire test, effettuare chiamate di sistema) e lavora per obiettivi di alto livello dati dall’utente. Non si limita a produrre codice in base a un prompt, ma porta a termine un compito in modo semi-indipendente. Ad esempio, se gli si chiede di “correggere un bug”, il Codex 2025 esplorerà il codice, tenterà diverse modifiche, eseguirà i test e itererà finché il bug non è risolto – comportamenti fuori portata per il modello 2021.Parallelismo e durata dei taskla nuova versione è progettata per gestire più task simultaneamente e lavorare su ciascuno per diversi minuti (fino a mezz’ora o più), riflettendo un approccio asincrono tipico di un “collega” che lavora in background. Il Codex originale generava un blocco di codice in pochi secondi come risposta diretta; non aveva alcuna nozione di esecuzione prolungata o multitasking. Questa capacità di multitasking in background è considerata da OpenAI un cambiamento fondamentale: Greg Brockman (co-fondatore di OpenAI) ha sottolineato che il vero passo avanti introdotto da Codex è proprio il parallelismo, .Integrazione con ecosistema e strumentiCodex 2025 è integrato nell’ecosistema ChatGPT e si connette con strumenti di sviluppo reali (repository Git, ambienti di test, CLI). OpenAI prevede inoltre di connettere Codex ad altri tool: ad esempio lanciare task da un IDE desktop ChatGPT, o da un sistema di tracciamento issue, o integrarlo in pipeline CI/CD in futuro. Al contrario, il vecchio Codex operava quasi esclusivamente tramite l’API OpenAI o tramite plugin dedicati (come Copilot nei vari IDE), generando codice “su richiesta” ma senza eseguire integrazioni operative dirette con altri sistemi.Qualità del codice e affidabilitàGrazie all’addestramento su RLHF specifico per coding, il nuovo Codex tende a produrre codice più pulito, aderente alle istruzioni e agli standard umani, rispetto al modello 2021. OpenAI afferma che codex-1 genera patch pronte per essere revisionate e integrate immediatamente, mentre il vecchio modello spesso richiedeva correzioni manuali e verifiche approfondite. Inoltre, Codex 2025 fornisce evidenze verificabili (log/test) di quello che fa, aumentando la trasparenza e la fiducia nel suo operato – cosa inesistente nel 2021.Modello sottostanteIl Codex originale era basato su GPT-3 (175 miliardi di parametri) con un fine-tuning su codice open source. Il nuovo Codex utilizza codex-1, un modello derivato dal più recente “OpenAI o3” (un modello di reasoning avanzato, successore di GPT-4). Ciò si traduce in maggiori capacità di ragionamento e contesto. Ad esempio, codex-1 può gestire contesti enormemente più grandi (fino a 192k token), permettendogli di avere “in mente” un intero repository di grandi dimensioni durante l’elaborazione. In più, i benchmark interni mostrano che codex-1 supera tutti gli ultimi modelli generici di OpenAI nei compiti di programmazione (SWE tasks) utilizzati nei test.Verso un nuovo paradigma di collaborazione uomo-macchinaLo strumento rappresenta un’evoluzione significativa, da semplice assistente di completamento codice a agente autonomo collaborativo: si possono immaginare scenari in cui gli sviluppatori “dirigono il lavoro che vogliono curare in prima persona e delegano il resto agli agenti”.Se il Codex originale, una sorta di prima versione, aveva dimostrato il potenziale dell’IA nel coding, la versione 2025 ambisce a rivoluzionare il modo in cui il software viene costruito, introducendo un nuovo paradigma di collaborazione uomo-macchina nello sviluppo software.Sam Altman (CEO di OpenAI), in occasione del lancio, ha paragonato l’importanza di questo agente a quella di ChatGPT al suo esordio, suggerendo che Codex potrebbe rappresentare un cambiamento di paradigma simile ma nell’ambito dello sviluppo software.OpenAI ha anche sottolineato di voler procedere con cautela ed iterazione controllata: Codex viene rilasciato come preview proprio per raccogliere feedback, migliorare la sicurezza e valutare l’impatto sul flusso di lavoro umano.L’azienda riconosce che, se da un lato strumenti come Codex possono aumentare la produttività, dall’altro è fondamentale monitorarne gli effetti su abilità umane, mercato del lavoro e sicurezza del codice prodotto.Quello che abbiamo è certamente un notevole passo avanti nell’assistenza IA alla programmazione. Le prime implementazioni indicano che non è pensato per sostituire gli sviluppatori, ma per potenziarli: l’idea è quella di poter avere al nostro fianco dei collaboratori che non rimpiazzano gli ingegneri software, ma che cambiano il modo in cui questi lavorano.Prospettive future per OpenAI Codex nello sviluppo softwareSe il 2021 ci aveva mostrato che un’IA poteva scrivere codice su richiesta, il 2025 ci sta mostrando che un’IA può diventare parte attiva del team di sviluppo, lavorando al fianco delle persone per costruire software in modo più rapido ed efficiente.Le prossime evoluzioni di Codex (e strumenti simili) ci diranno fino a che punto questa collaborazione uomo-macchina potrà spingersi nel rivoluzionare il mondo del software.

Perché creare e far crescere la tua e-learning community

Una e-learning community è un luogo privilegiato per unire la formazione aziendale online a principi di cooperazione, condivisione e collaborazione. A tutto vantaggio della produttività e del benessere organizzativo.
Il modello di apprendimento comunemente diffuso è un tipo di apprendimento sociale e interessa le persone fin dai primi anni di età. I bimbi vengono inseriti in una classe e, come gruppo, iniziano a imparare.
Esistono, certo, anche tipi di apprendimento individuale, leggere un libro, guardare un documentario o un tutorial, una lezione privata, ma in linea generale l’apprendimento è spesso legato a una comunità.
Per i sociologi Jean Lave ed Etienne Wenger, l’apprendimento è un atto di partecipazione sociale. Fin dal 1991 hanno diffuso il concetto di comunità di pratica, in cui i partecipanti possono co-creare un “repertorio condiviso di risorse: esperienze, storie, strumenti, modi per affrontare problemi ricorrenti”.
Questa idea di un insieme condiviso di risorse e storie è il punto in cui nasce la e-learning community, una comunità di apprendimento sociale online che può essere un fantastico modo di costruire una visione aziendale condivisa per collaboratori che operino da più sedi, in Italia o nel mondo.
Il punto di partenza per la creazione di una learning community è naturalmente l’identificazione di un luogo virtuale come una piattaforma e-learning che possa offrire la possibilità di un apprendimento sincrono o asincrono unito a tutte le caratteristiche che caratterizzano una “scuola”: possibilità di riunirsi in gruppi per collaborare, archivio documentale per i contenuti formativi multimediali, possibilità di contattare in modo rapido tutor e docenti, chat, forum, e spazio riservato a condivisioni di nuove prassi e buone pratiche, in audio o video, quello che in Teleskill chiamiamo Wiki- Experience.
Si tratta dell’opportunità, per chi deve apprendere, di poter accedere a sessioni dal vivo guidate da istruttori e risorse di apprendimento, con un focus significativo sull’apprendimento sociale. In altre parole, interagire con i propri colleghi attraverso dibattiti e discussioni online.
Come tutte le comunità, anche quella di una e-learning community richiede alcune accortezze per farla crescere e sviluppare armonicamente. Vediamo insieme quali.
Individuare il facilitatore della e-learning community

Tra i docenti è importante scegliere con accuratezza la figura del facilitatore.
Essere il facilitatore di una comunità online significa favorire le relazioni tra le persone. Non si tratta solo del tradizionale trasferimento di conoscenze o dell’insegnamento.
Tanto per fare qualche esempio, un buon facilitatore creerà un piano di contenuti didattici da pubblicare, che potrebbe includere commenti su ulteriori letture dopo una sessione webinar o porre una domanda per generare dibattito. Potrebbe avviare un sondaggio, richieste di riflessione o tenere una webinar di domande e risposte per conoscere in modo sempre più preciso le esigenze dei singoli e del gruppo.
Incentivare il social learning per il successo della comunità

Anche se la formazione aziendale avviene in una piattaforma e-learning, la comunità deve essere libera di comunicare con altre comunità. Non è un sistema chiuso, ma anzi può essere il modo migliore per attrarre sempre più membri nella nostra e-learning community. Il social learning è quindi un ulteriore strumento per interessare e coinvolgere i discenti al progetto formativo.
Favorire le comunità di pratica

Una learning community richiede una o più comunità di pratica, un luogo virtuale dove poter imparare in modo collaborativo, settorialmente su un argomento specifico. Un’altra caratteristica della comunità di pratica è la volontà di apprendere volontariamente, senza l’input del docente. La comunità di pratica sviluppa una conoscenza di tipo verticale su un dato tema ed è lo spazio in cui i principi di cooperazione e collaborazione diventano più rilevanti. La leadership è diffusa e l’aiuto dei colleghi è di stimolo e di supporto. Un luogo in cui esprimersi per far crescere una cultura collaborativa e condivisa e per apprendere in modo più autonomo rispetto all’apprendimento tradizionale.
Promuovere condivisione e fiducia

In una learning community si cresce tutti insieme. Quando si analizza collettivamente un metodo o una procedura che non ha funzionato non è tanto importante individuare il responsabile e attribuire una colpa, quanto piuttosto capire, collettivamente, cosa si può fare meglio, e quindi imparare dall’errore.Questo processo di fiducia si instaura più facilmente lavorando nelle comunità di pratica, soprattutto se si incoraggia la discussione, il confronto, la collaborazione e la condivisione.
Aiutare chi deve apprendere a “fare rete”

In una e-learning community i nuovi entrati devono poter comunicare facilmente con i senior e con i manager. Si impara l’uno dagli altri perché la comunità è anche un luogo di reverse mentoring, in cui ci si scambiano conoscenze e competenze.
Insieme a una serie di webinar si possono anche promuovere e incoraggiare i video e i podcast con dirigenti aziendali senior, in modo che diversi leader possano condividere le proprie esperienze e momenti di apprendimento.
I giovani potrebbero usare Wiki-Experience per condividere o proporre sistemi che velocizzino le procedure grazie alle nuove applicazioni digitali.
Monitorare la e-learning community

Una piattaforma e-learning specifica per la formazione come Teleskill Web Academy offre una reportistica molto accurata di ogni utente. Questo aiuta a conoscere i bisogni del singolo e del gruppo e ad offrire a tutti ciò di cui hanno bisogno: può essere un incontro personale con un docente, un webinar di approfondimento o altro ancora. Chat e forum sono uno strumento prezioso per conoscere il sentimento della comunità e anche in questo caso offrire risorse e contenuti sempre più professionalizzanti.

Contattaci

Vuoi rimanere aggiornato sulle nuove tecnologie per la Didattica e ricevere suggerimenti per attività da fare in classe?

Sei un docente?

soloscuola.it la prima piattaforma
No Profit gestita dai

Volontari Per la Didattica
per il mondo della Scuola. 

 

Tutti i servizi sono gratuiti. 

Associazione di Volontariato Koinokalo Aps

Ente del Terzo Settore iscritta dal 2014
Tutte le attività sono finanziate con il 5X1000