La regola dei segni in algebra

Gli insegnanti giustificano la regola dei segni? Se sì, sulla base di che cosa? Il prima e il dopo nell’insegnamento e il dibattito sulle LCD. Perché  (-1)(-1)=1?

Semplicemente perché la regola è questa! È una regola che è legata ad altre regole. Più esattamente, consegue dal desiderio di mantenere la proprietà distributiva della moltiplicazione rispetto all’addizione: a(b+c) = ab+ac.

Si sarebbe potuto stabilire che (-1)(-1)= – 1 , ma,  ponendo a =-1, b=1, c=-1 avremmo avuto:

-1(1-1) = -1 – 1=-2,  e  -1(1-1) = -1 · 0=0.

Quindi deve essere necessariamente (-1)(-1)=1

In effetti ci volle molto tempo perché i matematici si accorgessero che la «regola dei segni» e le altre definizioni che regolano il sistema dei numeri razionali non possono essere «dimostrate». Sono delle convenzioni. Esse sono state create per mantenere le proprietà fondamentali dell’aritmetica. Ciò che può – e deve – essere dimostrato è soltanto che, sulla base di queste definizioni, si mantengono le proprietà commutativa, associativa e distributiva dell’aritmetica dei naturali.

Allora, in modo più formale, la regola dei segni:

(-a)b = a(-b)=-ab,  (-a)(-b)=ab

con a e b numeri razionali, possiamo giustificarla sapendo che valgono le proprietà citate e che a·0 = 0 e b+(-b)=0. Allora, moltiplicando ambo i membri di quest’ultima uguaglianza, per a, si ha:

a (b+(-b)) = a·0

Cioè, applicando la proprietà distributiva:

ab+a(-b)) = 0

Sommando, a destra e a sinistra, -(ab), otteniamo: a(-b)=-(ab).

In modo analogo si può vedere che (-a)b=-ab.

Adesso moltiplichiamo b+(-b)=0 per -a; otteniamo:

(-a) ((b+(-b)) = (-a)·0

(-a)

Continua la lettura su: https://www.matmedia.it/la-regola-dei-segni-in-algebra/ Autore del post: Matmedia Fonte: http://www.matmedia.it

Related Articles

Le proprietà dell’addizione: Schede Didattiche Semplificate

Nell’insegnamento della matematica nella scuola primaria, le proprietà dell’addizione giocano un ruolo fondamentale nello sviluppo delle competenze matematiche di base degli studenti.
Comprendere le proprietà dell’addizione non solo aiuta i bambini a diventare più abili nel calcolo, ma fornisce loro anche una base solida per affrontare concetti più complessi in matematica. Tuttavia, insegnare queste proprietà in modo efficace può essere una sfida per gli insegnanti. È qui che entrano in gioco le schede didattiche semplificate.
Le schede didattiche semplificate sono risorse preziose che forniscono agli insegnanti strumenti pratici per rendere l’apprendimento delle proprietà dell’addizione più accessibile, coinvolgente e comprensibile per gli studenti della scuola primaria. In questo articolo, esploreremo l’importanza delle proprietà dell’addizione nell’ambito della matematica scolastica, presenteremo esempi pratici di come utilizzare le schede didattiche semplificate e forniremo suggerimenti utili per rendere le lezioni ancora più efficaci ed interessanti.
A fine articolo potrete scaricare gratuitamente in formato PDF “Le proprietà dell’addizione: Schede Didattiche Semplificate, Matematica per la Scuola Primaria“.
Indice

Importanza delle Proprietà dell’Addizione
Le proprietà dell’addizione, che includono la proprietà commutativa, associativa e dell’elemento neutro, sono fondamentali per la comprensione dei concetti matematici e per lo sviluppo delle abilità di calcolo degli studenti. Queste proprietà stabiliscono regole e relazioni tra i numeri che aiutano gli studenti a semplificare i calcoli e a risolvere problemi in modo più efficiente.
Utilizzo delle Schede Didattiche Semplificate

Proprietà Commutativa: Le schede didattiche possono illustrare la proprietà commutativa attraverso esempi visivi e pratici, incoraggiando gli studenti a scambiare l’ordine dei numeri in un’addizione senza cambiare il risultato.
Proprietà Associativa: Le schede didattiche possono presentare la proprietà associativa attraverso attività interattive che coinvolgono il raggruppamento di numeri in diverse combinazioni e dimostrano che il risultato finale rimane lo stesso.
Proprietà dell’Elemento Neutro: Le schede didattiche possono spiegare la proprietà dell’elemento neutro mostrando che l’aggiunta di zero a qualsiasi numero non cambia il valore di quel numero.

Approfondimenti sulle Proprietà dell’Addizione
Per una comprensione più approfondita delle proprietà dell’addizione, è importante coinvolgere gli studenti in attività pratiche e problemi che richiedono l’applicazione di queste proprietà in contesti reali o immaginari. Gli insegnanti possono utilizzare giochi, sfide e attività creative per mantenere gli studenti impegnati e motivati nell’apprendimento delle proprietà dell’addizione.
Suggerimenti Utili

Incorporare le proprietà dell’addizione in giochi e attività divertenti per rendere l’apprendimento più coinvolgente.
Utilizzare esempi pratici e situazioni della vita quotidiana per illustrare l’applicazione delle proprietà dell’addizione.
Fornire agli studenti opportunità di pratica e di applicazione delle proprietà dell’addizione attraverso compiti e attività di risoluzione dei problemi.

Potete scaricare e stampare gratuitamente in formato PDF “Le proprietà dell’addizione: Schede Didattiche Semplificate, Matematica per la Scuola Primaria“, basta cliccare sul pulsante ‘Download‘:

Domande Frequenti su ‘Le proprietà dell’addizione’: Matematica per la Scuola Primaria

Quali sono le proprietà dell’addizione?
Le proprietà dell’addizione includono la proprietà commutativa, la proprietà associativa e la proprietà dell’elemento neutro.

Cos’è la proprietà commutativa dell’addizione?
La proprietà commutativa dell’addizione afferma che l’ordine in cui si aggiungono due numeri non influisce sul risultato. Ad esempio, 3 + 5 è uguale a 5 + 3.

Cos’è la proprietà associativa dell’addizione?
La proprietà associativa dell’addizione afferma che l’ordine in cui si aggiungono tre o più numeri non influisce sul risultato. Ad esempio, (2 + 3) + 4 è uguale a 2 + (3 + 4).

Cos’è la proprietà dell’elemento neutro dell’addizione?
La proprietà dell’elemento neutro dell’addizione afferma che sommando zero a qualsiasi numero, il numero rimane invariato. Ad esempio, 5 + 0 è uguale a 5.

Perché è importante insegnare le proprietà dell’addizione nella scuola primaria?
È importante insegnare le proprietà dell’addizione perché forniscono ai bambini una base solida per comprendere meglio le relazioni tra i numeri e sviluppare strategie di calcolo più efficienti.

Come vengono insegnate le proprietà dell’addizione agli studenti della scuola primaria?
Le proprietà dell’addizione possono essere insegnate attraverso attività pratiche, esempi visivi e interattivi, e problemi che coinvolgono l’applicazione delle proprietà in situazioni reali o immaginarie.

Quali sono alcuni esempi pratici di come le proprietà dell’addizione possono essere utilizzate nella vita quotidiana?
Le proprietà dell’addizione sono utilizzate nella vita quotidiana in situazioni come il calcolo del cambio in una transazione, la determinazione del tempo trascorso sommando intervalli di tempo, e la pianificazione di eventi o attività che coinvolgono la somma di quantità o numeri.

Clicca per votare questo articolo!Maestra di Sostegno – Scuola Primaria

Le operazioni matematiche: tutte le proprietà da ricordare

Le proprietà dell’aritmetica servono a descrivere e comprendere le relazioni e le caratteristiche dei numeri e delle operazioni matematiche. Possono essere definite come regole poste a fornire una base solida per risolvere problemi matematici, dimostrare teoremi e applicare la matematica in vari contesti, tra cui scienze, ingegneria, economia e molte altre discipline.

All’interno di Blogdidattico puoi ritrovare già alcuni precedenti articoli in cui ho avuto l’opportunità di mostrarti alcuni approfondimenti inerenti all’addizione, sottrazione, moltiplicazione e divisione. Ti consiglio vivamente di consultarli nel momento in cui ritengo che siano presenti numerose informazioni che possano tornarti utili.

Nel corso di quest’articolo, invece, vorrei riportare tutte le proprietà delle operazioni matematiche, in modo da poter disporre di un quadro generale sulla questione. Analizzerò, tuttavia, soltanto le regole, spiegandone il contenuto, senza riportare esempi che invece trovi nei miei post scritti in precedenza.

Le proprietà dell’addizione

Image by rawpixel.com on Freepik

L’addizione è un concetto matematico cardinale che ci permette di combinare quantità o numeri per ottenere una somma. Le sue caratteristiche sono delineate da due proprietà fondamentali ossia la proprietà commutativa e la proprietà associativa.

Proprietà commutativa: enuncia che cambiando l’ordine degli addendi, ossia i numeri da sommare di un’addizione, la somma, quindi il risultato dell’addizione, non cambia.

Proprietà associativa: rivelandosi un po’ più macchinosa della prima proprietà riportata, essa espone che la somma di tre o più addendi non cambia se a due o più di essi si sostituisce la loro somma.

Le proprietà della sottrazione

La sottrazione, proprio come riportato nel nostro precedente articolo, è l’operazione matematica che consiste nel trovare la differenza tra due numeri, noti come il minuendo e il sottraendo. Il risultato di una sottrazione è chiamato differenza o resto. Essa vanta di una sola proprietà che permette di comprendere facilmente il meccanismo della sottrazione: la proprietà invariantiva.

Proprietà invariantiva: in una sottrazione, se aggiungiamo o togliamo la stessa quantità al minuendo e al sottraendo, il risultato finale (cioè, la differenza) non cambia.

Le proprietà della moltiplicazione

La moltiplicazione è un concetto matematico fondamentale che, combinando due o più numeri per produrne uno nuovo, noto come “prodotto“, svolge un ruolo cruciale nella nostra vita quotidiana, nel momento in cui ci permette di affrontare una vasta gamma di problemi matematici e pratici.

All’interno della moltiplicazione gli elementi coinvolti sono chiamati “fattori“, e i suoi particolari e le sue caratteristiche sono delineate da ben 3 proprietà: proprietà commutativa, proprietà associativa e proprietà distributiva.

Proprietà commutativa: stabilisce, come nel caso dell’addizione che scambiando di posizione i due fattori della moltiplicazione, il prodotto finale non cambia.

Proprietà associativa: oltre a rappresentare un’altra regola della moltiplicazione che può fornire un aiuto nei calcoli a mente, è la proprietà secondo la quale in una moltiplicazione composta da tre o più fattori si possono sostituire due qualsiasi fattori consecutivi con il loro prodotto senza che il prodotto cambi.

Proprietà distributiva: stabilisce che un fattore possa essere sostituito con due numeri il cui prodotto restituisce il numero sostituito, senza che il risultato finale cambi.

Le proprietà della divisione

L’ultima delle quattro operazioni fondamentali è la divisione, operazione che riscontriamo periodicamente all’interno della nostra vita quotidiana. Essa ci consente di distribuire equamente quantità in parti uguali o calcolare il rapporto tra due numeri. Per scoprire quali sono i suoi componenti e quale il suo elemento neutro ti consiglio vivamente di consultare il nostro precedente articolo nel quale avrò l’occasione di mostrarti ulteriori nozioni.

Come nelle altre, anche le caratteristiche della divisione sono delineate da due importanti proprietà: proprietà invariantiva e distributiva.

Proprietà invariantiva: se dividiamo o moltiplichiamo dividendo e divisore per la stessa quantità, il risultato finale (cioè, il quoziente) non cambia.

Proprietà distributiva: espone che dividere una somma (o una differenza) per un numero equivale a dividere tutti i termini della somma (o della differenza) per quel numero, per poi addizionare (o sottrarre) i risultati ottenuti.

Vuoi rimanere aggiornato sulle nuove tecnologie per la Didattica e ricevere suggerimenti per attività da fare in classe?

Sei un docente?

soloscuola.it la prima piattaforma
No Profit gestita dai

Volontari Per la Didattica
per il mondo della Scuola. 

 

Tutti i servizi sono gratuiti. 

Associazione di Volontariato Koinokalo Aps

Ente del Terzo Settore iscritta dal 2014
Tutte le attività sono finanziate con il 5X1000