Cara matematica

Dichiarazione d’amore di uno studente alla matematica che risponde: il mio cuore si apre solo a coloro che dimostrano di meritarlo con studio e passione. 

In occasione di San Valentino, festa degli innamorati che ricorre il 14 febbraio, l’Intelligenza Artificiale è stata sollecitata a immaginare la dichiarazione d’amore di uno studente alla matematica ed ecco il risultato:

Cara matematica,

tu sei la mia costante più preziosa, l’incognita che completa ogni equazione della mia vita. Sei la radice quadrata della mia felicità, la variabile che rende ogni giorno un’equazione da risolvere insieme.

Con te, ogni problema diventa un’opportunità per crescere e imparare. Come due numeri primi, siamo indivisibili, e insieme possiamo superare ogni ostacolo. Il nostro amore è come una sequenza infinita, sempre in evoluzione ma mai finita.

Sei la mia geometria del cuore, la forma perfetta che completa il mio mondo. Come due assi cartesiani, i nostri destini si sono incrociati e non si separeranno mai. Grazie per essere la mia costante in un mondo di variabili, per essere la soluzione a ogni mio problema. Il nostro amore è un teorema irrefutabile, una verità assoluta che rende la mia vita completa.

Con il mio amore totale, il tuo studente

Invitata a rispondere alla dichiarazione d’amore dello studente, la matematica si è espressa così:

Caro studente innamorato,

sono lusingata dal tuo affetto verso di me. Tuttavia, come ben saprai, l’amore vero e profondo si merita con impegno e dedizione. Il mio cuore matematico si apre solo a coloro che dimostrano di

Continua la lettura su: https://www.matmedia.it/cara-matematica/ Autore del post: Matmedia Fonte: http://www.matmedia.it

Articoli Correlati

I sessant’anni della scuola media

I sessant’anni della scuola media. Storia dei cambiamenti avvenuti negli insegnamenti di matematica e scienze in un’ottica fusionista.
Giacinto Bosco (1905 – 1997)
La legge n. 1859 del 31 dicembre 1962 istituì la scuola media unica per tutti i preadolescenti italiani.
Dopo la pubblicazione dei programmi per la scuola elementare nel 1955, dominava un marcato ottimismo circa la definizione dell’assetto da dare alla scuola media, problema reso peraltro impellente dal dettato costituzionale sull’obbligo scolastico. Ci fu bisogno però di un ulteriore settennio di maturazione perché fosse varata la più importante legge del sistema scolastico italiano del dopoguerra,  la legge 31 dicembre 1962, n. 1859, che istituisce e ordina la «nuova» Scuola Media:
Art.1. — Fini e durata della scuola
                 In attuazione dell’articolo 34 della Costituzione, l’istruzione obbligatoria successiva a quella elementare è impartita gratui­tamente nella scuola media, che ha la durata di tre anni ed è scuola secondaria di primo grado.                La scuola media concorre a promuovere la formazione dell’uomo e del cittadino secondo i princìpi sanciti dalla Costituzione e favorisce l’orientamento dei giovani ai fini della scelta dell’attività successiva.
 Art. 2. — Piano di studi
                 Il piano di studi della scuola media comprende i seguenti insegnamenti obbligatori: religione (con la particolare disci­plina di cui alla legge 5 giugno 1930, n. 824); italiano, storia ed educazione civica, geografia; matematica, osservazioni ed elementi di scienze naturali; lingua straniera; educazione artistica; educazione fisica.Sono inoltre obbligatorie nella prima classe le applicazio­ni tecniche e l’educazione musicale che diventano facoltative nelle classi successive.Nella seconda classe l’insegnamento dell’italiano viene in­tegrato da elementari conoscenze di latino, che consentano di dare all’alunno una prima idea delle affinità e differenze fra le due lingue.Come materia autonoma, l’insegnamento del latino ha ini­zio in terza classe; tale materia è facoltativa.L’alunno che intenda seguire insegnamenti facoltativi può sceglierne uno o più all’inizio di ogni anno scolastico.Per assicurare con la partecipazione attiva di tutti  gli insegnanti la necessaria unità di insegnamento  il Consiglio di Classe si riunisce almeno una volta al mese[1].
I programmi, gli orari e le prove di esame furono stabiliti con D. M. del 24.4.1963 e pubblicati nel supplemento ordinario n. 1 della G.U. n.124 dell’11.5.1963.
La Matematica e le Osservazioni ed elementi di scienze naturali vi figurano come corsi distinti. La matematica ha 3 ore in ciascuna classe del triennio, e prevede agli esami di licenza prove scritte e orali; alle Osservazioni ed  elementi di scienze sono assegnate 2 ore in prima e in seconda classe e 3 ore nella terza, un voto per l’orale e uno per la pratica.
È  successivamente che avviene il “pasticcio”: è il D.P.R. 15.11.1963 n. 2063 che abbina gli insegnamenti istituendo una cattedra di 16 ore d’insegnamento settimanali per ciascun corso.
Non fu una soluzione inventata dalla sera alla mattina, ma v’era stato un lungo dibattito e un’esperienza di sperimentazione avviata già dal 1957 in molte scuole[2]. Se da una parte, però, la scelta fu determinata anche da motivi organizzativi e pratici  (tra l’altro anche la previsione della necessità, di lì a pochi anni, di un numero elevato di docenti), dall’altra si era formato il convincimento, condiviso più dai politici e dai pedagogisti che dai matematici, che fosse necessario a tale livello di età non frantumare troppo gli insegnamenti. Si riconosceva, infatti, che uno dei vantaggi dell’antico ginnasio inferiore, che anche la scuola media di Bottai (1940) aveva ereditato, era costituito dall’insegnante di classe, il quale svolgendo l’intero gruppo letterario (italiano, latino, storia, geografia, a cui poi si era aggiunta l’educazione civica) “dava di fatto unità all’insegnamento, continuando in certo modo l’unicità di insegnante della scuola elementare, ed evitando nella delicata età della preadolescenza la molteplicità di metodi e di impostazione, inevitabilmente congiunta con la molteplicità di insegnanti. Da questo punto di vista… sembra molto opportuno l’abbinamento della matematica con le osservazioni ed elementi di scienze naturali, che tuttavia pare abbia sollevato difficoltà da parte di alcuni insegnanti di queste discipline”[3]
Tullio Viola (1904 – 1985)
Le difficoltà consistevano, è ovvio, nel dover insegnare cose che non si conoscevano e questo valeva sia per i laureati in matematica che per i laureati in scienze.
A farsi portavoce di tali difficoltà fu l’UMI, il cui ufficio di Presidenza espresse voto unanime contro l’abbinamento perché  “non giova né alla serietà né alla efficacia dell’insegnamento ed è lesivo dei diritti degli insegnanti di ruolo di Matematica”. Ma anche la Mathesis,  presidente Tullio Viola[4] (1904-1985, nella foto a lato), provvide ad inviare al Ministro un “Manifesto” con le firme di 637 docenti che giudicavano “l’abbinamento tra le due materie come fatalmente e gravemente dannoso anche dal solo punto di vista della formazione dei giovani allievi dagli 11 ai 14 anni”. Ad eccezione delle osservazioni sul disagio dei professori di matematica i quali, pur in presenza di un minor numero di classi affidate, sono costretti ad insegnare le scienze, le motivazioni addotte contro l’abbinamento  appaiono, però, abbastanza ripetitive, basandosi sulla impreparazione dei docenti ad insegnare ugualmente bene la matematica e le scienze.
Giganteggia, invece, la figura di B. de Finetti che ovviamente è per l’abbinamento: lui è sempre e solo per la “fusione”.
Vorrebbe non solo non separare la persona (un esempio che fa anche, contrariamente a quel che tutti propongono, per il caso dell’insegnante di matematica e fisica) ma neppure le ore d’insegnamento  (e così sarà in seguito). Espone e motiva la sua posizione in modo esauriente, ponendo a fondamento del suo ragionamento l’assioma: «Nessuna disciplina, avulsa dal contesto generale, giustifica la propria esistenza e la fatica imposta a chi deve apprenderla» e arriva finanche ad abbozzare un possibile futuro libro di testo organizzato a mo’ di dizionario enciclopedico.
La sua è un’idea nuova confacente a quel clima culturale, pedagogico e didattico che favorisce l’abbinamento.
È  quel clima che si alimenta dell’opera di Emma Castelnuovo e di altre voci nuove. Ancor prima che l’abbinamento fosse sancito dal D.P.R. del mese di novembre, nella sua “Didattica della Matematica”, la cui prima edizione è del marzo 1963, con riferimento ai “continui ravvicinamenti” dei due corsi, la Castelnuovo scrive:
« Siamo certamente tutti d’accordo nel riconoscere che l’edu­cazione scientifica deve avere per scopo di far passare da una visione fantasiosa, magica, sovrannaturale del mondo che ci cir­conda ad un’obiettiva consapevolezza e ad un sereno giudizio dei fenomeni naturali; deve essere, in breve, una continua asce­sa nell’arte del saper guardare. Ora, mi sembra di poter distin­guere in questa ascesa quattro grandi periodi ai quali dovreb­bero corrispondere quattro tappe nel corso triennale:
I) L’osservazione dei passatempi preferiti dal bambino sui 10-11 anni ci offre l’opportunità di una scoperta pedago­gica; è a quell’età che si acuisce nel bimbo la passione clas­sificatoria: raccolta di figurine, di francobolli, di farfalle, ecc. Il collezionismo è — per usare una felice espressione della Montessori — il “momento sensibile” del periodo intorno ai 10 anni. È dunque proprio a questa età, nel primo anno della scuola media, che dobbiamo interessare i ragazzi alla classificazione degli animali e delle piante.[….] La costruzione di una classificazio­ne ha per scopo di organizzare le idee, di dare un ordine alle forme, al Ci accorgiamo di essere in piena costruzione matematica: è lo stesso processo mentale infatti che ci conduce, ad esem­pio in geometria, alla classificazione delle famiglie dei poligo­ni[….] Il “saper guardare” porta dunque il ragazzo, spontanea­mente, senza ausilio del numero, ma sorretto da un abito ma­tematico, ad una costruzione astratta basata su osservazioni qualitative: il bambino, analizzando il concreto, coglie analogie e diversità, raggruppa cose simili, forma delle classi, costruisce, sintetizza. Si può, per nostra comodità e guida di pensiero, associare questo periodo al nome di Aristotele.
II) Ma una più precisa osservazione esige la Se vogliamo approfondire la nostra indagine sulla natura dovre­mo cominciare a valerci non solo dell’abito matematico ma anche della matematica come strumento: dovremo osservare la natura misurando quello che i sensi e il pensiero ci sug­geriscono. Se avevamo associato il primo periodo al nome di Aristotele, potremo associare questo secondo periodo al nome di Leonardo da Vinci: «L’esperienza sui fenomeni naturali — dice Leonardo — va fatta misurando». Si troveranno rapporti, proporzioni, armonie nella natura, quelle stesse armonie che i Greci avevano trovato nell’arte. Così lo studio della botanica porterà alla scoperta della fillotassi, la zoologia e l’anatomia del corpo umano ci offriranno infiniti spunti e continuo terreno di ricerca. Al giudizio vago e personale si sostituiscono dei dati numerici, universali. Si va dunque avanti nell’arte di saper guardare; prima erano le somiglianze, le diversità, le forme, era il qualitativo, che ci faceva distinguere, discernere, scoprire gli invarianti; ora, in questo secondo periodo, il saper guardare vuol dire affinare i sensi con l’ausilio del numero: è il quantitativo che ci fa scoprire uguaglianze di rapporti, semplici leggi di proporzioni.
III) Ma la sola misura in un certo numero di casi non è spesso sufficiente per scoprire la legge. Dobbiamo arrivare al terzo stadio, al sistema ipotetico-deduttivo di Galilei per poter dare al ragazzo la consapevolezza della potenza dello strumento matematico allo scopo di riuscire a leggere nel «gran libro della natura».
Galileo si rivolge, come Leonardo, all’esperienza, ma non si accontenta di ciò che essa dà spontaneamente. La natura viene provocata, interrogata, idealizzata; si fanno delle ipo­tesi sui fenomeni che si rivelano ai sensi, si deducono da que­ste ipotesi delle conseguenze, si verifica con esperimenti se queste conseguenze sono esatte.
Anche a dei ragazzetti possiamo parlare del problema del­la caduta dei gravi: possiamo loro riferire dell’ipotesi di Ga­lileo che la velocità sia proporzionale al tempo; è difficile verifi­care direttamente questa legge, ma, se vale questa legge se ne trae la conseguenza che gli spazi sono proporzionali ai qua­drati dei tempi; e questa seconda legge è facile verificarla spe­rimentalmente. È vera allora l’ipotesi da cui eravamo partiti. Non è solo la potenza del procedimento ipotetico-deduttivo che il ragazzo coglie in un’esperienza di fisica molto meglio che in un ragionamento geometrico, ma egli comprende «sul vivo» la dinamicità di una formula, e questo è — a mio av­viso — un risultato importantissimo. Le formule che noi presentiamo nel corso di matematica appaiono in generale come qualcosa di fisso, di statico; cogliere la dinamicità di una for­mula significa entrare in pieno nel concetto di funzione […].
IV) il quarto periodo infine è quello di Cartesio, è l’identificazione di algebra e geometria attraverso un saper guardare che porta l’attenzione non più sul particolare ente (sia esso numero o figura), ma sulle leggi formali che legano questi enti.
La cattedra di Scienze Matematiche, Chimiche, Fisiche e Naturali
Le proteste dei matematici però non rimasero inascoltate. La C.M. 10 luglio 1965, n. 292 consentirà ai Presidi di affidare a due docenti distinti, per ogni due corsi, l’insegnamento della Matematica e quello delle Osservazioni ed elementi di scienze naturali. In tal caso, ovviamente, il docente che avrebbe assunto quest’ultimo insegnamento doveva completare il suo orario di cattedra in una classe collaterale, effettuando così 16 o 17 ore settimanali, mentre l’altro docente, insegnando la sola matematica per 3 ore settimanali in ciascuna classe dei due corsi, avrebbe avuto un carico orario di 18 ore settimanali. La prospettata soluzione però non ebbe gran seguito; i docenti preferirono sempre di più l’impegno nelle sole tre classi di un corso mantenendo l’abbinamento dei due insegnamenti.  Si arriva così dodici anni più tardi con la L. 348 del 16.6.1977 a sancire un insegnamento unitario che assume la denominazione di Scienze Matematiche, Chimiche, Fisiche e Naturali al posto di Matematica e Osservazioni ed Elementi di Scienze Naturali. Un insegnamento di matematica e di scienze integrate, finalizzato anche all’educazione sanitaria, che la legge potenzia portando la cattedra da 16 a 18 ore, 6 ore per classe senza altra distinzione interna. Saranno i programmi del 1979[5] a raccomandare di prevedere  per ciascun anno una distribuzione equilibrata dei tempi da dedicare rispettivamente alla matematica e alle scienze sperimentali, e ciò  perché, dati i frequenti collegamenti e la costante interazione prevista nel lavoro di classe fra la matematica e le scienze sperimentali, non è possibile stabilire una rigida ripartizione dell’orario settimanale fra le due aree.
Quei programmi del 1979 rappresentano il punto di arrivo e la meta qualitativa più elevata delle riflessioni sul rinnovamento pedagogico e didattico che aveva infervorato l’ultimo ventennio. Alla loro redazione lavorarono molti dei personaggi che quel dibattito avevano alimentato. realizzando un documento che ancora oggi si presenta il  più completo e maturo e di armonica e coerente sintesi di pedagogia e scienza. Quei programmi, definiti anche tra i migliori d’Europa, rimasero, sia per l’organizzazione dei contenuti in grandi temi che per la modalità di scrittura e per i principi pedagogici, il riferimento per i programmi ministeriali che li seguirono, da quelli delle elementari del 1985 a quelli per il PNI e a quelli del progetto Brocca, cioè fino a quando ha avuto un senso parlare di programmi ministeriali.
La legge sull’autonomia scolastica (1997) infatti affiderà alle scuole il compito di costruire il programma di insegnamento, riservando al Ministero quello di definire gli obiettivi formativi cui i programmi delle scuole, tutte le scuole del territorio nazionale, devono tendere. Ai programmi ministeriali si sostituiscono così le Indicazioni Nazionali,  ovvero gli standard di conoscenze e competenze che ogni scuola avrebbe dovuto perseguire. Un cambiamento la cui influenza sul piano pedagogico e didattico si palesa  potenzialmente notevole.
Le prime Indicazioni Nazionali per il primo ciclo, primaria e secondaria di primo grado (non si chiama più scuola media), sono del 2004  legge Moratti).  Esse non fanno più riferimento ad una cattedra di Scienze Matematiche, Chimiche, Fisiche e Naturali, ma contemplano l’insegnamento di Matematica e l’insegnamento di Scienze e Tecnologia. L’unitarietà degli insegnamenti così faticosamente raggiunta fu così rinnegata,[6] smembrata anche nel piano orario che su base annua assegnava mediamente 127 ore alla Matematica e 118 ore complessive a Scienze e Tecnologia, ovvero 85 per Scienze e 33 per Tecnologia[7]. Una separazione però durata poco, poco gradita a docenti, presidi e famiglie e all’amministrazione per le difficoltà di gestione delle cattedre (per legge di 18 ore), e gli stessi matematici sono ritornati sulle loro posizioni e hanno lasciato correre. Le attuali Indicazioni Nazionali, in vigore dal 1° settembre 2013, ricostituiscono l’unitarietà perduta: c’è un solo insegnamento, e non si chiama Scienze Matematiche, Chimiche, Fisiche e Naturali, ma ha la denominazione di Matematica e Scienze con sei ore settimanali indivise. Il problema però rimane: è quello dei docenti cui si chiede di possedere padronanza di un campo vastissimo di conoscenze e abilità non sorretto da opportunità formative adeguate.
I principi pedagogici e i contenuti dei programmi della scuola media del 1963 e del 1979
Già la premessa ai programmi del 1963 scandisce in chiare e precise raccomandazioni ai docenti quello che è il frutto migliore del pensiero pedagogico:

La continuità pedagogica (non occorre cominciare da zero): sarà […] necessario raccordarsi con l’insegnamento elementare utilizzando subito le nozioni che l’alunno già possiede (per esempio quelle sulle aree di particolari poligoni, sul sistema metrico decimale, ecc.).
L’ordine della trattazione: la ripartizione del programma nei tre anni di corso e l’ordine degli argomenti per ciascuno di essi non hanno valore vincolante. Ad esempio, già nella prima classe, accennando alle successive estensioni del concetto di numero, potrà essere anticipata la nozione di un numero relativo.
L’insegnamento a spirale: l’insegnante che in relazione allo sviluppo psicologico dell’alunno non abbia ritenuto di trattenersi a lungo sui capitoli più complessi, accontentandosi di una prima, sia pure approssimata, visione d’insieme, riprenderà in seguito i medesimi argomenti per un’analisi più approfondita al fine di un migliore svolgimento del programma.
Pedagogia dell’interesse, metodo genetico: nel passaggio dallo studio dei numeri interi a quello dei razionali e dei relativi, il professore potrà far cogliere agli alunni il processo storico e quello formale che hanno condotto alle successive estensioni del numero. Potrebbe anche essere utile dare un cenno, sotto la stessa luce, dei numeri irrazionali che si presentano con l’estrazione di radice quadrata.
Unità della matematica, fusionismo di de Finetti: sarà cura costante l’armonizzare l’aritmetica con la geometria.
Fusionismo in geometria: argomenti di geometria dello spazio potranno essere introdotti parallelamente ad altri riguardanti il piano, se una qualche analogia facilita la comprensione  (quadrato e cubo…).
Visualizzazione, operatività: è consigliabile, ogni volta che se ne presenti l’occasione, il ricorso ai “grafici “, per la traduzione visiva che essi forniscono delle più varie circostanze, tenendo conto che l’insegnamento parallelo di osservazioni ed elementi di scienze naturali offrirà frequenti spunti per la rappresentazione grafica di relazioni.
La sistemazione e la riflessione su ciò che si sa, dal concreto all’astratto: nella terza classe si [….] porterà [….] l’alunno a ripensare e a riflettere sul programma svolto nelle tre classi al fine di far cogliere il senso e la necessità del passaggio da uno studio sperimentale e concreto a concezioni astratte e indagini razionali.
Pedagogia del controesempio: si terrà presente che una nozione può assumere un più chiaro significato se messa a raffronto con una nozione antitetica o parallela : così, per esempio, il sistema di numerazione decimale acquista tutto il suo valore ove lo si confronti con sistemi non posizionali o con sistemi a base diversa dal dieci ; e così, per mettere in risalto le proprietà formali delle operazioni, l’insegnante potrà portare esempi di leggi di composizione su insiemi numerici e non numerici, in cui tali proprietà vengano a mancare.
Metodo euristico, il valore dell’esercizio: l’esercizio non dovrà essere soltanto strumentale per il consolidamento della tecnica delle operazioni e dei procedimenti; esso deve essere inteso a fare gradualmente acquisire all’alunno il pieno possesso dei significati concettuali. Pertanto non ci si dovrà trattenere su complicati calcoli (espressioni aritmetiche laboriose; scomposizioni in fattori primi di numeri molto grandi; …).
Metodo attivo: alcune esercitazioni consisteranno in relazioni scritte e orali aventi il fine precipuo di fare esprimere all’alunno il proprio pensiero su elementari questioni matematiche derivanti da osservazioni spontanee e sopra le quali l’insegnante avrà chiamato la sua attenzione con suggerimenti, esperienze e ricorso a sussidi didattici (modelli, dispositivi, ecc.). Tali relazioni abitueranno l’alunno alla riflessione, alla correttezza e alla sobrietà di espressione.

 Con chiarezza, sobrietà e concisione si esprime quasi tutto: dai metodi dell’insegnamento attivo, alla pedagogia del controesempio, al metodo bruneriano (ma già di Comenio) dell’approfondimento ciclico o a spirale, dal fusionismo ad un primo accenno di riferimento alla matematica moderna (le leggi di composizione), dal valore della prospettiva storica e dell’esercizio, all’invito a parlare e scrivere di matematica.
Non c’è nulla che non vada e tutto è talmente chiaro e comprensibile che ogni riflessione, ogni possibile miglioramento non può che andare proprio nella direzione di mirare a rafforzare quei principi pedagogici e ad esplicitare meglio taluni contenuti adeguandone anche il linguaggio ai nuovi tempi. È su questo che si discute nell’arco di un quindicennio[8]:  si concorda che manca un riferimento esplicito alla matematica moderna e principalmente agli insiemi e alle strutture e ancora  alla statistica e alla probabilità, alla matematizzazione del reale, alle tecnologie, e si ammette che va precisato meglio il previsto “ricorso ai grafici”, dunque alla geometria cartesiana. Infine va data una risposta alle questioni sull’ordine della trattazione: genetico, psico-genetico, per problemi, ecc.
I programmi del 1979 realizzano tutto ciò prevedendo sette “grandi temi” che mostrano già nei titoli ciò che dei contenuti si vuole rimarcare e rafforzare:

La geometria prima rappresentazione del mondo fisico
Insiemi numerici
Matematica del certo e matematica del probabile
Problemi ed equazioni
Il metodo delle coordinate.
Trasformazioni geometriche
Corrispondenze ed analogie strutturali.

Sul piano pedagogico le concezioni e i metodi già presenti nella premessa del ’63 trovano un loro completamento:
–    nell’insegnamento dinamico della geometria: lo studio della geometria trarrà vantaggio da una presentazione non statica delle figure, che ne renda evidenti le proprietà nell’atto del loro modificarsi; […] La geometria dello spazio non sarà limitata a considerazioni su singole figure, ma dovrà altresì educare alla visione spaziale. È  in questa concezione dinamica che va inteso anche il tema delle trasformazioni geometriche.
–    nell’insegnamento per problemi: si terrà presente che risolvere un problema non significa soltanto applicare regole fisse a situazioni già schematizzate, ma vuol dire anche affrontare problemi allo stato grezzo[9] per cui si chiede all’allievo di farsi carico completo della traduzione in termini matematici.
Ad una didattica per problemi è direttamente connesso il riferimento esplicito alla  matematizzazione intesa come interpretazione matematica della realtà nei suoi vari aspetti (naturali, tecnologici, economici, linguistici…) e particolare rilievo viene ancora dato alla interdisciplinarità e alla operatività: si farà ricorso ad osservazioni, esperimenti, problemi tratti da situazioni concrete così da motivare l’attività matematica della classe e  si sottolineano i legami con la formazione della competenza linguistica, con l’educazione tecnica, con la geografia (metodo delle coordinate, geometria della sfera, …), con l’educazione artistica (prospettiva, simmetrie,…).
Per quanto riguarda gli argomenti, forte è il riferimento all’uso dei materiali[10], e raccomandate sono altresì le costruzioni con riga e compasso e l’uso ragionato degli strumenti di calcolo.
Dopo le accuse di insiemistificazione, il riferimento agli insiemi è posto in una formulazione saggia: il linguaggio degli insiemi potrà essere usato come strumento di chiarificazione, di visione unitaria e di valido aiuto per la formazione di concetti. Si eviterà comunque una trattazione teorica a sé stante, che sarebbe, a questo livello, inopportuna.
Una limitazione è poi inferta ad uno strumento antichissimo:
le proporzioni,  che hanno sempre occupato un posto importante nell’insegnamento già dalle elementari con un legame privilegiato con la realtà e la risoluzione di problemi concreti. Ad esempio, nell’istituto magistrale (l’indirizzo di studio che ha preparato eserciti di maestri)[11] erano particolarmente importanti per le finalità educative e perché consentono di risolvere un’ampia classe di problemi di applicazione dell’algebra alla geometria in modo elementare,   riconducendoli in genere ad equazioni di primo grado (noti il rapporto tra due grandezze e la loro somma o differenza o prodotto, o somma dei quadrati, ecc. ). Ad evitare esagerazioni, nei programmi del 1979 è scritto: l’argomento […] non deve essere appesantito imponendo, come nuove, regole che sono implicite nella proprietà delle operazioni aritmetiche, ma deve essere finalizzato alla scoperta delle leggi di proporzionalità (y = kx; xy = k).
Per quanto riguarda gli argomenti “nuovi”, il successo pieno spetta però alla geometria cartesiana:
il  metodo delle coordinate con il rappresentare graficamente fenomeni e legami fra variabili, aiuterà a passare da un livello intuitivo ad uno più razionale. Alcune trasformazioni geometriche potranno essere considerate anche per questa via. E quella delle coordinate è una via che è divenuta quasi maestra nella pratica didattica a tutti i livelli di scolarità. Tant’è che nella prova scritta di matematica agli esami di licenza media  la geometria analitica è apparsa sempre presente in almeno uno dei 3 o 4 quesiti in cui è articolata la prova[12].  Né la situazione sembra essere mutata in questi anni di disorientamento normativo: dalle prime Indicazioni Nazionali Moratti a quelle Fioroni e alla loro armonizzazione in vigore dal primo settembre del 2013.
Bruno de Finetti (1906-1985)
L’ordine e la struttura per temi
Una rilevanza decisamente maggiore assume poi l’attività di sistemazione e di riflessione su ciò che si è appreso, che trova una suo riferimento specifico soprattutto nel tema 7 ed è rimasta una costante nella didattica della matematica, tenuta particolarmente presente nella redazione dei successivi programmi. Dal punto di vista pedagogico è l’affermazione del convincimento che l’organizzazione dei contenuti matematici debba seguire la formazione dei concetti (Polya: concept formation) ed è la via da seguire per l’introduzione di un’assiomatica. Per la geometria, ad esempio, l’obiettivo da perseguire nella scuola superiore sarà di costruirne l’organizzazione invece di darla come cosa già bella e fatta, in una sua confezione tipo. La sistemazione logica dei contenuti è rinviata agli anni conclusivi del ciclo di studi secondari e ciò trova concretizzazione nei programmi per il PNI e nei piani di studi Brocca, come già detto precedentemente[13]. Si parte invece nei bienni con un lavoro propedeutico di organizzazione logica di piccole “parti”, un insieme ben definito di teoremi legati in una catena deduttiva che fa trasparire l’inferenza logica e prepara il campo alla comprensione del significato di un sistema deduttivo.
Sono  però l’ordine della trattazione e la modalità della struttura per temi le caratteristiche che risaltano di più.
Mentre i programmi del 1963 sono ripartiti per anno e sembrano quasi contraddire quello che è detto nella bella premessa, quelli del 1979 rompono con gli itinerari standard e canonici, chiariscono che non c’è una sistemazione comoda della matematica, riferimento di una via didattica altrettanto comoda, e rimettono alla professionalità dei docenti la scelta del percorso più efficace: “Nel programma i contenuti sono raggruppati in temi  e non elencati in ordine sequenziale, al fine di facilitare la individuazione di quelle idee che appaiono essenziali allo sviluppo del pensiero matematico degli allievi.”  Il docente non deve ripercorrere nell’insegnamento quella che è stata la sua linea di apprendimento né avere a riferimento un ben definito ed esclusivo sviluppo del pensiero matematico, ma deve essere attento a farlo lievitare nei giovani, pronto e sensibile a  manovrare concetti e procedure da saldare insieme trovandone sempre nuovi accostamenti. “I temi – è scritto – non devono essere quindi intesi come capitoli in successione, ma argomenti tratti da temi diversi potranno, in sede di programmazione, alternarsi ed integrarsi nell’itinerario didattico che l’insegnante riterrà più opportuno”.
La struttura per temi, come già più volte detto, è una modalità che ha avuto successo.
Presa a modello e utilizzata nei successivi documenti, ha tuttavia mostrato col tempo alcuni suoi limiti: per esempio,  induce ad accrescere oltre il sostenibile l’ampiezza dei programmi a scapito della coerenza interna degli argomenti. Si parla dei programmi come di raccolte antologiche, di serbatoi enciclopedici. Si cerca di porvi riparo con la tendenza a voler essere più precisi, a dettagliare e ripartire gli argomenti, a corredarli di osservazioni, orientamenti, raccomandazioni e finanche di esempi di esercizi. È un segnale dell’impoverimento della riflessione nel settore della didattica matematica, che si registra tuttavia proprio quando i tempi sono maturi per l’affermazione di un’altra significativa novità, un’altra pietra miliare, e cioè il passaggio dai Programmi Ministeriali  alle Indicazioni Nazionali della legge sull’autonomia scolastica (L. 59/1997 e D.P.R. n.275/99).
Esso stabilisce la dimensione individuale e personale del programma,  che viene affidato alla singola istituzione scolastica e al singolo docente, mentre riserva all’Amministrazione della Scuola il compito di dettare, per l’intero territorio nazionale le mete, i traguardi di conoscenze ed abilità che lo studente deve possedere e la scuola deve aiutare a raggiungere e ad acquisire. A tali finalità avrebbero dovuto, per norma, corrispondere le Indicazioni Nazionali.
NOTE
[1]   La facoltatività degli insegnamenti (reintrodotta dalla L.53/2003) fu eliminata nel 1977 con la legge n.348.
[2] È  la prima esperienza di sperimentazione cui diede un impulso particolare il Ministro Giacinto Bosco. Nell’anno scolastico 1962/63 funzionavano 300 terze classi e 3 mila seconde classi sperimentali; il loro numero rappresentò un argomento decisivo con cui l’allora ministro Luigi Gui sollecitò il Parlamento all’approvazione della legge istitutiva.
[3] C. Motzo Dentice di Accadia, L’obbligo scolastico e la nuova scuola media, LSE, Napoli, 1965.
[4] «E quali non furono le sue preoccupazioni per la riforma della Scuola Media Inferiore! E quale fu il suo dolore per la battaglia.. … che lo vide perdente, contro l’abbinamento folle dell’insegnamento della Matematica alla Chimica, alla Fisica, alle Scienze Naturali nella Scuola Media unica?» da P. Dupont, Tullio Viola: Un esempio da imitare, Periodico di Matematiche 3/1986.
[5] Furono emanati con il D.M. 9 Febbraio 1979 del Ministro Pedini e pubblicati nel  S.O. alla Gazzetta Ufficiale n.50 del 20 Febbraio 1979. Della commissione fecero parte i matematici:   Giuseppe Arcidiacono, Luigi Campedelli, Emma Castelnuovo, Liliana Chini Artusi, Cesarina Dolfi, Michele Laforgia, Lucio Lombardo Radice, Giovanni Prodi, Francesco Speranza, Vinicio Villani.
[6] la battaglia per la separazione della cattedra, invece di affievolirsi è stata perseguita, in particolare dall’UMI, all’interno delle commissioni di studio costituite per l’elaborazione delle Indicazioni.
[7] Dall’anno  scolastico 2006/07 portate a 66 ore.
[8] Le critiche non sono mancate. Significativa quella di Don Milani:  “La seconda materia sbagliata è matematica. Per insegnarla alle elementari basta sapere quella delle elementari. Chi ha fatto la terza media ne ha tre anni di troppo [….] In quanto alla matematica superiore come parte della cultura generale si può provvedere in altro modo. Due o tre conferenze d’uno specialista che sappia dire a parole in che consiste […] Non è vero che occorra la laurea per insegnare matematica alle medie. È una bugia inventata dalla casta che ha i figlioli laureati. Ha messo la zampa su 20.478 posti di lavoro un po’ speciali. È la cattedra dove si lavora meno (16 ore settimanali) – È quella in cui non occorre aggiornarsi. Basta ripetere per anni le stesse cretinate che sa ogni bravo ragazzino di terza media. La correzione dei compiti si fa in un quarto d’ora. Quelli che non son giusti sono sbagliati” (da Lettera a una Professoressa, 1968)
[9] È un’espressione molto significativa, quasi trascurata però, per dire di problemi mancanti di qualche dato o da “raffinare” nelle richieste, che consentono anche una personalizzazione della formulazione.
[10] Le esperienze didattiche che E. Castelnuovo realizza già dagli anni ’50  sono diffusissime ed oggetto di “mostre” molto apprezzate. Diffusi sono anche, specie a livello primario, il materiale strutturato di Dienes, i regoli di Cuisinaire-Gattegno, quelli di Stern, i geopiani di Gattegno, le esperienze di Libois e di Papy (il minicomputer) e il materiale “povero” della pedagogia della Montessori.
[11] L’ultima maturità per i “maestri”  c’è stata nel 1999 e con essa c’è stato l’ultimo problema per i maestri: una specialità tutta italiana di algebra applicata alla geometria e di legame con la realtà (cose che oggi si sbandierano senza conoscerne la storia).
[12] D.M. 26.8.1981: “La prova scritta di matematica deve tendere a verificare le capacità e abilità essenziali indicate dai programmi ministeriali, con riferimento ad un certo numero di argomenti scelti tra quelli maggiormente approfonditi nel triennio. A tal fine si darà una prova che dovrà riferirsi a più aree tematiche (fra quelle previste dai programmi) e a diversi tipi di conoscenze; la prova sarà articolata su tre o quattro quesiti, che non comportino soluzioni dipen­denti l’una dall’altra. In tal modo si eviterà che la loro progressione blocchi l’esecuzione della prova stessa. Ad evitare una suddivisione troppo schematica dei contenuti, argomenti tratti da temi diversi potranno opportunamente coesi­stere nei singoli quesiti.
I quesiti potranno toccare sia aspetti numerici sia aspetti geometrici sen­za peraltro trascurare nozioni elementari nel campo della statistica e della probabilità. Uno dei quesiti riguarderà gli aspetti matematici di una situazione avente attinenza con attività svolte dagli allievi nel corso del triennio nel campo delle scienze sperimentali, dell’educazione tecnica o eventualmente di altri ambiti di esperienza.
Ogni commissione deciderà se e quali strumenti di calcolo potranno essere consentiti dandone preventiva comunicazione ai candidati. Durata della prova: tre ore.
[13] Didattica delle Scienze, n. 248, diretta da Mauro Laeng
L’articolo è in gran parte tratto da: Emilio Ambrisi, I 120 anni della Mathesis, Aracne 2015

Una diversa prospettiva su Darwin e l’evoluzione: il parere di due scienziati

Il 12 febbraio si festeggia il giorno dedicato all’autore dell’Origine delle specie. Due ricercatori ripercorrono con uno sguardo nuovo il concetto (e processo) di “selezione naturale”, nonché le teorie darwiniste

Sullo stesso argomento:

Il meccanismo della “selezione naturale”, descritto da Charles Darwin nell’Origine delle specie del 1859, è forse il più frainteso tra le idee solidamente radicate nella scienza. Anche da parte di scienziati o medici si ascoltano frasi del tipo “La selezione naturale agisce… al fine di… perché cerca di… per la sopravvivenza della specie…”, ovvero, “la selezione naturale è l’unico motore del cambiamento evolutivo… progetta e costruisce sistemi biologici perfettamente adattati all’ambiente”, etc. Si potrebbe continuare. Queste affermazioni sono prive di senso e consolidano, spesso dall’alto di una cattedra, fraintendimenti di senso comune che ostacolano la comprensione dei processi evolutivi.

Darwin è diventato negli ultimi cinquant’anni circa, in alcuni contesti, una sorta di icona laica. Refrattario a partecipare a controversie culturali o politiche delle quali non era competente, si aspettava che la sua articolata teoria, apparentemente semplice, fosse sempre meglio compresa e che diventasse oggetto di sviluppi e usi scientifici, anche in ambiti non strettamente zoologici, ma comunque in modi pertinenti e non pseudoscientifici come il darwinismo sociale. Aveva sperimentato, anche nelle discussioni con colleghi dai quali aveva imparato molto, quanto fosse faticoso per persone pur molto intelligenti capire i suoi argomenti.

Il Darwin Day, che si festeggia il 12 febbraio, giorno della nascita, serve a somministrare, dove circolano infettivi pregiudizi contro le spiegazioni evoluzionistiche del divenire della vita e dell’uomo, alcune dosi di razionalità come richiamo. Noi vogliamo però rivolgere l’attenzione ad aspetti meno dibattuti, perché pensiamo che le persone, soprattutto i giovani, non debbano “credere” all’evoluzione, o che siamo animali che discendono da antenati diversamente evoluti, perché lo dicono gli scienziati, ma “capire” l’evoluzione, acquisendo una comprensione critica del modo in cui funzionano i processi biologici e in particolare il meccanismo della selezione naturale. Discuteremo il significato della teoria della selezione naturale e diremo qualcosa sul dibattito in corso da un paio di decenni tra i biologi evoluzionistici sulla necessità o meno di fare un tagliando al modello tradizionale dell’evoluzione biologica. Parleremo poi della produttività scientifica dell’idea darwiniana della selezione naturale, al di là dell’evoluzione biologica, ricordando che il principio darwiniano della selezione ha trovato casa nell’immunologia, nella neurobiologia, nell’oncologia e nell’intelligenza artificiale. Infine, diremo qualcosa sulle cause dei fraintendimenti del concetto di selezione naturale.

Il concetto dell’evoluzione

Proviamo a circoscrivere l’ambito della discussione raccontando uno scenario evolutivo più o meno semplificato o schematizzato. Immaginiamo una popolazione di sistemi fisici individuali in grado di replicarsi, cioè di costruire copie di sé stessi, i quali siano caratterizzati da differenze più o meno grandi tra loro, e immaginiamo di voler studiare questa popolazione nel suo insieme, al procedere del tempo. Se le percentuali con cui i diversi replicatori nella popolazione cambiano via via che passa il tempo, diremo che la popolazione evolve, ovvero che cambiano nel tempo la forma o le forme degli individui prevalentemente rappresentati in quella popolazione.

È facile capire come l’evoluzione di una popolazione di replicatori, definita nei termini che abbiamo indicato, dipenda dal numero di individui riproduttori che un individuo di quella forma è in grado di produrre, copiando sé stesso. In tutti i casi, cioè, a determinare la composizione di una popolazione nella generazione successiva sarà NON il numero di copie generate da ciascun replicatore, ma il numero di copie di quel replicatore che si trova nel sottoinsieme dei riproduttori della generazione successiva. Un replicatore potrebbe anche lasciare moltissime copie di sé stesso, ma tutte sterili o di vita troppo breve per arrivare a loro volta a replicarsi; sebbene temporaneamente quel replicatore sarà molto rappresentato nella popolazione di una generazione successiva, in quella ancora successiva il suo tipo sparirà.

L’evoluzione della popolazione, quindi, è l’evoluzione del sottoinsieme di riproduttori di quella popolazione, ovvero il cambiamento nella percentuale di forme diverse che compongono quel sottoinsieme. Possiamo chiamare la variazione di questa percentuale, mediata su più generazioni per correggere eventuali fluttuazioni casuali, il tasso di successo di un certo tipo di replicatore. Ora, perché mai alcuni replicatori dovrebbero avere maggior successo di altri, cosicché la popolazione studiata evolva arricchendosi nel tempo di quel particolare tipo di individui, invece di altri? Cosa influenza cioè il successo dei replicatori? Vi sono due principali risposte.

Innanzitutto, come è ovvio, la capacità di un replicatore di creare un numero elevato di copie di sé stesso, in grado pure esse di replicarsi, è superiormente limitata dal numero di operazioni di copia che un replicatore riesce a fare di sé stesso (nel corso della vita cioè prima che l’entropia abbia la meglio), cioè dal numero di discendenti che riesce a generare. In secondo luogo, dato un certo numero di discendenti generati, conta quanti di questi arriveranno a loro volta in età riproduttiva.

Se la popolazione che stiamo studiando è rappresentata solo da replicatori diversi fra loro che creano copie di sé stessi, la sua evoluzione comporterà via via l’arricchimento percentuale di quei tipi che hanno il massimo tasso di successo, dopo di che l’evoluzione cesserà, nel senso che la popolazione resterà stabile nella sua composizione. Tuttavia, come osservò Darwin, i replicatori biologici hanno due caratteristiche fondamentali, che favoriscono un’incessante evoluzione delle loro popolazioni: innanzitutto, non generano copie identiche di sé stessi, e in secondo luogo si replicano in un ambiente che ha profondi effetti sul tasso di successo di ciascuna forma nell’ambito della popolazione – includendo come ambiente anche gli altri replicatori che interagiscono con un tipo dato.

A ogni generazione, vi è quindi la possibilità che emerga una nuova forma di maggior successo degli altri (specifichiamolo ancora, successo qui inteso come capacità di essere rappresentato nella successiva generazione di riproduttori, non più alto, più forte, più sano, etc.), e contemporaneamente l’ambiente pone vincoli variabili nel tempo, in modo che aumenti o diminuisca il tasso di successo di questo o quel tipo di replicatori rispetto agli altri nella stessa popolazione.

In sostanza, a ogni generazione vi è una fonte di nuova variabilità nei tipi presenti in una popolazione di replicatori, e a ogni generazione si presentano ostacoli ambientali che possono essere identici o diversi da quelli delle generazioni precedenti, e che possono pure variare durante il tempo di vita di una singola generazione. In mancanza di altri vincoli ambientali, la pura competizione (non una lotta fisica!) fra gli individui della stessa popolazione o anche di altre per ottenere le medesime risorse che consentono la replicazione e il successo riproduttivo dei propri discendenti costituisce già un vaglio selettivo che crea condizioni favorevoli per certi individui e sfavorevoli per altri.

Darwin chiamò il processo che favorisce certi tipi in una popolazione, per effetto del vaglio ambientale, “selezione naturale”, in analogia al processo con cui allevatori e agricoltori selezionano certi individui con certe caratteristiche che giudicano favorevoli (selezione artificiale). Ma l’analogia, come tutte le analogie, può essere fuorviante se è estesa al di là del suo significato iniziale, che riguarda il processo e i suoi effetti, e non l’esistenza di un agente che lo mette in atto (non importa se umano, divino o di altro tipo). Infatti Darwin solo inizialmente usò l’analogia dell’”Essere infinitamente saggio”, per optare invece su paragoni scientifici tra la selezione naturale e affinità elettive o gravità, probabilmente perché aveva identificato le trappole insite nell’antropomorfizzazione.

La selezione darwiniana è l’unico modo di spiegare senza ricorrere ad agenti esterni come l’evoluzione delle popolazioni di organismi viventi possa procedere in maniera incrementale, costruendo fenotipi sempre più specializzati nell’esercitare certe funzioni in determinati ambienti: se un vincolo ambientale dura abbastanza a lungo nel tempo, così che molte generazioni possano esservi esposte, le variazioni che a ogni generazione accrescono casualmente il tasso di successo tramite la modifica di una certa struttura fisica, purché esista un modo di trasmettere quelle variazioni alla successiva generazione, finiscono per accrescere la rappresentazione di quella struttura fisica nella popolazione di replicatori che si sta studiando.

Al contempo, variazioni ambientali che rendono svantaggiose le caratteristiche di tipi precedentemente affermatisi in condizioni diverse, portano alla loro sostituzione con altre forme. Si è spesso pensato a questo processo come a una lotta per la sopravvivenza degli individui, ma in realtà esso consiste nel semplice variare delle probabilità di rappresentazione di un certo carattere nella futura generazione di riproduttori; chi perisce prima del tempo certamente non vi sarà rappresentato, ma non è detto che lo sia nemmeno chi sopravvive più a lungo e vive meglio dal punto di vista individuale, se non vi è un meccanismo che traduca tali caratteristiche in una maggiore rappresentazione del proprio tipo fisico nelle popolazioni future.

La lotta tra gli organismi è quindi sì per sopravvivere, ma vincere questa lotta non implica affatto che le generazioni future saranno più ricche di nostri discendenti, se altri replicatori meno fortunati dal punto di vista individuale vivono peggio e periscono prima, ma dopo aver generato una maggior prole. L’evoluzione di una popolazione o una specie non è guidata da chi è più adatto all’ambiente, più forte o più intelligente, ma da chi è più adatto o più fortunato nel generare copie fertili di sé stesso in quell’ambiente; e di fatti, come si accorse e spiegò magistralmente già Darwin, meccanismi quali quello della selezione sessuale spingono allo sviluppo persino di caratteri dannosi per il singolo individuo, perché, come accade per la coda del pavone, possono impacciare il movimento e peggiorare le probabilità di sopravvivenza di un maschio, ma migliorarne la rappresentazione in termini di suoi discendenti nella successiva generazione di riproduttori: le code sono diventate per selezione naturale dei segnalatori per le femmine dello stato di salute dei maschi, introducendo un ulteriore livello a cui può aver luogo il gioco probabilistico di investire le risorse riproduttive in modo più vantaggioso.

Parallelamente al fenomeno di evoluzione incrementale spiegato da Darwin, le popolazioni evolvono anche attraverso meccanismi stocastici, in conseguenza per esempio di deriva genetica, effetto fondatore o complessi scambi di materiale genetico con popolazioni diversissime di ogni regno vivente, per non parlare degli effetti di subitanee catastrofi di ogni genere; ma mentre questi fenomeni, la cui individuazione e descrizione continua ancora oggi, esauriscono la loro azione in tempi piuttosto brevi e nell’ambito di una o poche generazioni, il meccanismo illustrato da Darwin è l’unico in grado di spiegare quelle che altrimenti parrebbero teleologiche tendenze innate o divine sul lungo periodo. Darwin non ha scoperto l’evoluzione, fenomeno di cui tutti gli osservatori anche antichi erano ben consci; ha descritto sulla base di un’ampia documentazione naturalistica la ragione per cui è possibile disporre gli organismi viventi in una serie che, partendo da quelli più antichi e seguendone la discendenza per intervalli di tempo piuttosto lunghi se misurati rispetto al tempo di esistenza di una generazione, rivela una continua e graduale trasformazione. Di tanto in tanto possono esservi e vi sono salti bruschi e accelerazioni, così come la comparsa di incroci tra esseri anche diversissimi, ma a posteriori resta l’apparenza in questi intervalli di tempo anche lunghissimi di una sequenza fluida, in cui è possibile identificare l’antecedente di ogni elemento e il suo successore, che lo si faccia utilizzando caratteri fenotipici o genetici. Non abbiamo bisogno di nessuna altra spiegazione che trascenda la natura fisica, perché basta la semplice euristica darwiniana per capire come, in presenza di certe proprietà universali dei replicatori biologici e dell’ambiente, sia proprio quello che ci si aspetta di osservare.

Il dibattito tra i biologi evoluzionisti sullo stato di salute della teoria dell’evoluzione

La biologia evoluzionistica non è fondata su dogmi o credenze, come una religione o pseudoscienza, che rimangono e devono rimanere, per funzionare, sempre uguali. Le vere scienze cambiano, migliorano, si aggiornano, etc. Così, negli ultimi venti anni circa una corrente, per così dire, di biologi evoluzionisti di una nuova generazione, ha sostenuto che la teoria tradizionale che viene raccontata nei manuali di biologia evoluzionistica, e usata nella ricerca, conosciuta come “sintesi moderna” (sm), andrebbe aggiornata e integrata per costruire una “sintesi estesa” (se). Si sostiene che gli avanzamenti scientifici a tutti i livelli della ricerca biologica, dalle macromolecole agli ecosistemi alla cultura, rendano obsoleta l’idea che solo la selezione naturale, agendo attraverso il cambiamento delle frequenze di geni responsabili, via mutazioni casuali, delle variazioni fenotipiche, possa spiegare gli adattamenti.

Sarebbe il momento, dicono gli innovatori, di rendere la teoria dell’evoluzione pluralista, riconoscendo, per esempio, che le configurazioni precedenti delle strutture genomiche e di altri tratti dell’organismo svolgono un ruolo nel generare variazioni evolutive, che la selezione non agisce solo sul fenotipo individuale determinando il cambiamento della frequenza dei geni, ma a diversi livelli dalle molecole alle cellule alle idee culturali (selezione multilivello), che esistono forme di ereditarietà non solo genetica (ma anche epigenetica e culturale), che i processi di sviluppo, e la plasticità che li caratterizza, incanalano i percorsi evolutivi e generano direttamente novità fenotipiche e che gli organismi modificano gli ambienti a cui appartengono, partecipando attivamente alla costruzione di nicchie. L’obiettivo della se è di portare l’evoluzione oltre l’approccio centrato sui geni studiati dalla genetica delle popolazioni suggerendo approcci più centrati sugli organismi e sull’ecologia. Molti di questi processi sono considerati secondari nella causalità evolutiva da chi lavora con la sm, mentre i sostenitori della se chiedono che siano trattati come cause evolutive di prima classe. Per prevenire le critiche di voler scaricare il darwinismo si dice che i nuovi sviluppi non confutano Darwin, ma semmai usano mappe per l’esplorazione del mondo vivente da lui disegnate 150 anni fa, mostrando la straordinaria fertilità del suo pensiero.

I processi enfatizzati dalla se non sono negati dalla sm, la quale però non assegna loro, effettivamente, particolare rilevanza esplicativa. Nella misura in cui i sostenitori della se dicono che questa offre spiegazioni migliori, in realtà lo fanno partendo dal presupposto che tale superiorità derivi dalla sua struttura pluralista, dalla sua diversa agenda di problemi e da un crescente numero di prove della rilevanza evolutiva di fatti come i bias dello sviluppo, l’ereditarietà inclusiva e la costruzione di nicchie, anche culturali. Diverse analisi di numerosi casi modello mostrano che alcune spiegazioni fornite dalla se sono davvero migliori di quelle prevalenti nella sm. Per esempio, la se spiega meglio l’evoluzione delle prime piante addomesticate dall’uomo. Ma su altre questioni come l’emergere del trattato falcemico in alcuni gruppi di agricoltori in Africa occidentale, la persistenza della lattasi, etc. non si vede cosa abbia da offrire in più. Oltre che essere pluralisti, nella scienza è utile essere laici.

In tutti i casi, la discussione fra i contrapposti fronti non è sull’essenza del modello di evoluzione darwiniana, cioè su quanto abbiamo illustrato in apertura, quanto piuttosto sulla caratterizzazione delle forze che sono in grado di mettere in moto l’evoluzione di una popolazione di replicatori e sui caratteri che sono il substrato in base al quale procede la vagliatura da una generazione all’altra. Chi dunque, da posizioni retrograde spesso di tipo religioso, crede di utilizzare le argomentazioni dei sostenitori della se come contraddizioni della visione darwiniana, fraintende meccanismi e significati su cui si sta svolgendo in realtà il dibattito; ne è un classico esempio l’utilizzo in senso teleologico dei nuovi fatti su cui sta facendo luce l’epigenetica, che sono usati in se per mostrare l’esistenza di un ulteriore supporto fisico e ulteriori meccanismi selettivi di informazione genetica, mentre vengono additati dagli oppositori del darwinismo come la prova di un’inerente fallacia del meccanismo di selezione naturale su varianti casuali di una popolazione. Stendiamo poi un velo pietoso sulle continue affermazioni persino in articoli pubblicati di Nature, ove si afferma che sarebbero stati scoperti meccanismi di ereditarietà lamarckiana, in contrapposizione a quelle darwiniana: sono fesserie per diverse ragioni, ma prima di tutto perché la teoria darwiniana dell’ereditarietà (teoria della pangenesi) era più lamarckiana di Lamarck.

Il successo euristico del darwinismo

Darwin scoprì in che modo le specie o popolazioni di organismi possono far fronte o rispondere a situazioni impreviste. Abbiamo descritto sopra la logica del processo evolutivo. La selezione naturale, come abbiamo detto, non è l’unico meccanismo che produce il cambiamento evolutivo, ma è quello che produce costantemente e in modo non casuale un cambiamento adattativo. Pochi anni dopo la pubblicazione dell’Origine delle specie (1859) alcuni embriologi, citologi, immunologi e neurologi (parliamo non di figure secondarie, ma di Wilhelm Roux, August Weissmann, Ilya Metchnikoff, Paul Ehrlich, Santiago Ramon y Cajal) proposero di utilizzare il modello darwiniano anche per spiegare i fenomeni adattativi che si osservano nello sviluppo embrionale, nella risposta immunitaria e nella neurogenesi dell’anatomia del cervello.

Quelle intuizioni, se così vogliamo chiamarle, sono state riprese sulla scorta di una scienza di base molto più avanzata e oggi il principio darwiniano della selezione nel mondo biologico è usato in altri contesti dove si tratta di rispondere a situazioni inattese, imparando dall’esperienza, senza naturalmente che le memorie acquisite sia trasmesse ereditariamente. Ovvero anche non siamo necessariamente di fronte a replicatori, per cui si parla in alcuni casi non di “replicazione differenziale”, ma di “amplificazione differenziale” (concetto più inclusivo).

Un caso emblematico è l’immunità. I potenziali antigeni naturali sono in numero sterminato e il sistema immunitario non li può conoscere tutti in anticipo. Comincia a costruirsi una memoria nell’infanzia, ma poca cosa rispetto alle continue sfide parassitarie, in particolare virali. La soluzione evolutiva trovata è simile a quella sopra descritta. Viene sintetizzato ed espresso sui linfociti B un repertorio di anticorpi enorme ma finito – viene cioè generata una popolazione immunologicamente molto varia di linfociti B – e quando entra nel corpo un antigene, questo viene intercettato dagli anticorpi agganciati alle cellule che lo riconoscono molecolarmente “meglio”, e così si innesca la replicazione differenziale – ovvero la fase di selezione – di quelle cellule che rispondono, aumentando di numero in circolo e rilasciando proprio gli anticorpi che neutralizzano l’antigene.

Il meccanismo è più complicato e il sistema immunitario è una formidabile macchina darwiniana su diversi piani. Tuttavia, questa è la logica, e quando ci vacciniamo “insegniamo” al sistema immunitario a riconoscere una minaccia che non ha mai incontrato prima, usando il principio darwiniano di selezione in una popolazione caratterizzata da una varietà casuale; in altre parole, non è la singola cellula l’oggetto dell’adattamento che permette la risposta immunitaria, ma uno stimolo ambientale che cambia la rappresentazione percentuale di alcune cellule preadattate, già presenti in una popolazione ampia e variegata.

Anche la memoria e l’apprendimento fondate sul cervello dipendono da meccanismi selettivi; diverse teorie neurobiologiche spiegano in che modo la complessità del cervello dà luogo all’ordine mentale, assumendo che processi di sviluppo neuroanatomico e la formazione delle sinapsi siano guidati da dinamiche darwiniane o selettive durante la maturazione del cervello e nella morfogenesi delle sinapsi che incanalano i percorsi elettrici e gli scambi neurochimici alla base della memoria e dell’apprendimento.

È possibile cioè definire il fenotipo di ciascun neurone in base alla connettività delle sue sinapsi, il quale è oggetto di selezione da parte degli stimoli esterni e interni che continuamente arrivano, stimoli in grado di rinforzare alcune connessioni sinaptiche a svantaggio di altre, portando così alla selezione di popolazione di insiemi connessi di neuroni funzionalmente segregati, integrati in maniera gerarchica con altri insiemi di neuroni in maniera ancora dipendente dalla selezione effettuata dagli stimoli esterni, come prevede ad esempio la teoria del darwinismo neurale del Nobel Gerald Edelman.

Nei due esempi precedenti, sebbene la selezione e l’arricchimento dei fenotipi più adatti seguano una logica darwiniana e producano quindi l’adattamento di una popolazione, il numero di generazione di replicatori coinvolti nel processo è limitato (nel caso del sistema immunitario, ove esiste una maturazione immunologica dopo la prima selezione di linfociti) oppure assente (nel caso del cervello, ove le sinapsi sono sì generate e formate di continuo, ma non attraverso un processo di autoreplica). In altri esempi di estensione dell’idea di Charles Darwin, invece, i sistemi descritti sono più propriamente oggetto di evoluzione nel senso che abbiamo specificato in apertura di questo scritto.

I tumori, per cominciare, sono in realtà una popolazione di cellule geneticamente e fenotipicamente variabili, che agiscono all’interno di un ambiente selettivo, dovendosi misurare sia con la disponibilità limitata di risorse per la loro replicazione (per questi si vascolarizzano), sia con il contrasto esercitato dal sistema immunitario. Dopodicé sono sottoposti alle pressioni selettive di radioterapie e chemioterapie. La logica darwiniana si adatta perfettamente alla descrizione della loro evoluzione temporale, e questa per l’oncologia di base è un’idea acquisita. Il cancro non sarà mai sconfitto come patologia, per la semplice ragione che il suo sorgere è un evento probabilistico e il suo sviluppo è adattativo in senso darwiniano. Di fatto, grazie alla ricerca migliorerà sempre più la cura della malattia, in particolare cercando di disinnescarne le dinamiche evolutive, impedendo l’angiogenesi o agendo sui processi di destabilizzazione attiva del genoma delle cellule tumorali che generano variabilità genetica e metabolica, invece di affidarsi solo ai trattamenti contro bersagli specifici che possono guidarne la progressione verso l’incurabilità.

Il darwinismo è anche alla base dell’intelligenza artificiale più avanzata, dove entra sotto la forma dei cosiddetti algoritmi genetici o evolutivi che usano il principio della selezione per ottimizzare le soluzioni dei problemi che devono trattare enormi quantità di dati. Diverse macchine che implementano procedimenti adattativi basati sul principio di selezione di machine learning e deep learning, si chiamano… “Darwin”. In questo caso, si utilizzano “popolazioni” di codici informatici leggermente diversi fra loro e se ne determina la sopravvivenza in base alla loro efficienza nel risolvere problemi preassegnati; si introducono quindi nuove piccole variazioni (secondo leggi casuali o anche in maniera guidata), ottenendosi una nuova generazione di codici su cui reiterare la procedura. Gli algoritmi genetici trovano decine e decine di applicazioni in campo scientifico, industriale, finanziario, nei videogiochi, etc., proprio in ragione del fatto che il meccanismo di introduzione di varietà e successiva selezione, come Darwin dimostrò, genera risposte adattative, e quindi può essere rivolto alla soluzione efficiente di un gran numero di problemi.

La naturale competizione fra darwinismo ed euristiche prescientifiche

Visto il successo del darwinismo in casi come quelli appena citati, e visto il vivo sviluppo ancora in corso, desumibile per esempio dal dibattito fra sm e se, si potrebbe immaginare che tale tipo di euristica scientifica sia ormai accettata senza ostacoli quando si tratti di spiegare i fenomeni che ricadono sotto il suo dominio. In realtà, anche il darwinismo, come qualunque spiegazione scientifica del mondo, deve competere con altri tipi di euristiche, che non sono fondate sul pensiero razionale, ma che hanno garantito la sopravvivenza e il successo della nostra specie fino a oggi.

Questo perché, a fini evolutivi non è necessario che una rappresentazione del mondo con valore adattativo sia anche vera. Gli adattamenti, anche cognitivi, devono solo dare un vantaggio riproduttivo nel senso specificato in apertura, per pesare ai fini dell’evoluzione di una specie. Per cui non è sorprendente che, come sottoprodotto della selezione di euristiche utili al successo della nostra specie nell’ambiente in cui si è evoluta, abbiamo accumulato o siamo inclini ad accumulare credenze le più false, In taluni casi, tanto queste credenze quanto le euristiche da cui derivano sono dei bias che ostacolano l’apprendimento della scienza, che del resto fino a tre/quattro secoli fa circa non è mai servita per aumentare le chances di sopravvivenza e riproduzione, meno che mai degli scienziati. Nessuna sorpresa scoprire che la teoria della selezione naturale è controintuitiva, cioè aliena a quei procedimenti cognitivi che attuiamo inconsciamente: noi non arriviamo intuitivamente a capire l’eliocentrismo, la teoria galileiana-newtoniana del moto, la teoria cinetica del calore, la relatività ristretta e generale, il principio di indeterminazione, l’entanglement quantistico, etc.

Fra le tante euristiche istintive di cui siamo dotati, qui tratteremo quelle che maggiormente contrastano con la comprensione reale del significato del darwinismo, per aiutare a riconoscere certi tipici difetti di ragionamento che si ritrovano anche nelle dichiarazioni di chi la biologia scientifica dovrebbe conoscerla o di chi ne è un convinto sostenitore, ma non presta dovuta attenzione a evitare istintive ricostruzioni del mondo naturale.

Decenni di ricerche condotte, soprattutto in Nordamerica, con studenti di scuole secondarie e università cercando di identificare gli ostacoli epistemologici che si frapponevano all’insegnamento delle materie biologiche, hanno mostrato che noi veniamo al mondo, ovvero ragioniamo naturalmente in termini teleologici o finalistici, essenzialisti e antropocentrici. I primi due ostacoli sono anche quelli che Darwin dovette combattere, inizialmente anche in sé stesso, e che impediscono di capire intuitivamente la sua teoria.

Il modo di pensare teleologico è pervasivo nel linguaggio, e Spinoza lo chiamava “asilum ignorantiae”. Spiega le strutture, i processi o i fenomeni biologici facendo riferimento al loro presunto scopo, obiettivo, funzione o risultato. Per esempio, accade spesso di ascoltare scienziati e anche biologi dire che “gli adattamenti servono a promuovere la riproduzione e la continuazione di quella particolare specie”, o che “gli animali si mimetizzano per sfuggire ai predatori”. Per persone digiune di biologia “le piante producono ossigeno perché gli animali possano respirare”, o “i geni si accendono al momento giusto perché una cellula si sviluppi nel modo giusto”, oppure ancora che “il cancro (o un parassita) muta per sopravvivere al farmaco”.

Non è una semplificazione linguistica quella che porta a formulare frasi erronee, visto che frasi corrette sono di identica comprensibilità e semplicità linguistica. Il problema è che si cerca la causa di un fenomeno in un ipotetico traguardo utile, mentre invece la giustificazione a posteriori del punto di arrivo va ricercata nel meccanismo selettivo che ha prodotto l’effetto osservabile. Il cancro non muta per resistere a un farmaco: la stragrande parte delle mutazioni in cui incorrono le cellule cancerose sono svantaggiose o ininfluenti, e comportano la morte cellulare.

Semplicemente, a causa della particolare instabilità genomica, un cancro muta, e così la probabilità che per puro caso in una popolazione sia presente qualche cellula resistente ad una terapia che uccide tutte le altre cellule è più alta rispetto ad un insieme di cellule che mutano poco. Non vi è bisogno di una spinta intrinseca, come nel lamarckismo, o disegno divino, come nelle religioni, per spiegare l’origine del collo delle giraffe o dell’occhio. Basta dare sufficiente tempo a popolazioni di replicatori. Quindi non è necessario, perché il darwinismo funzioni, attribuire uno scopo particolare al processo evolutivo, operazione questa che trasferirebbe semplicemente una volontà dall’individuo o dalla divinità ad una popolazione o alla “natura”.

Tuttavia, credere false cose vere (i nostri errori di tipo II in statistica) è pericoloso, mentre credere vere cose false (errore di tipo I) di norma no. I nostri antenati che credevano che il fruscio nell’erba fosse un pericoloso predatore quando invece era solo il vento, avevano più probabilità di sopravvivere che se avessero creduto che il fruscio nell’erba fosse solo il vento quando invece era un pericoloso predatore. Le pressioni selettive guidate dalla logica di cui sopra hanno probabilmente favorito gli animali più propensi a ritenere che tutti i modelli di spiegazione che prevedano una volontà o un intento come cause iniziali siano reali, cablando nel nostro cervello un finalismo che ritroviamo nel linguaggio persino quando descriviamo il funzionamento di un euristica nata per il rifiuto di tale modo di pensare, ovvero il darwinismo.

Come probabile conseguenza della nostra innata teleologia, si giunge ad un altro tipo di euristica che è di ostacolo alla comprensione del darwinismo, ovvero alla credenza che il finalismo che percepiamo nei fenomeni sia in realtà espressione della presenza di agenti dotati di specifica volontà, non immediatamente visibili, che indirizzano lo sviluppo di un dato processo. Si tratti di anime, spiriti, fantasmi, divinità, demoni, angeli, alieni, progettisti intelligenti, cospiratori governativi che infesterebbero il mondo e lo controllerebbero, ma anche di enti studiati dalla scienza, come il genoma, organi quali il cervello o meccanismi come la selezione naturale. Questa “agenticità” presente nel mondo può essere ridotta all’attribuzione di volontà dai tratti umani alle cause di ogni tipo di fenomeno, naturale o meno, di cui si fa esperienza, quando questo fenomeno presenti speciali caratteristiche quali la sua ricorsività, oppure una sua struttura intricata o altri aspetti insoliti. La nostra innata tendenza a cogliere schemi nella realtà, che siano veri o presunti, ci porta a moltiplicare il numero di volontà cui attribuiamo la loro esistenza, cioè ad agentificare il mondo intero. Siccome poi il nostro cervello non possiede un dispositivo per discriminare automaticamente tra credenze false e vere, restiamo spesso preda di illusioni sulla presenza di schemi veri o falsi che siano, creati da volontà ovviamente inesistenti e modellate sulle emozioni e sugli intendimenti umani.

Agenticità e antopomorfismo sono di norma strettamente intrecciati: infatti finiamo per dipingerci il tipo di intenti e di volontà degli agenti dotati di fini utilizzando il modello che meglio conosciamo – intenti e modi di agire umani – in quanto ominidi con una corteccia sviluppata, una consapevolezza emotiva e una teoria della mente. Quest’ultima capacità, utile nelle relazioni sociali fra i conspecifici, è stata estesa però come “teoria della mente” degli agenti che immaginiamo alla base di fenomeni notevoli che scorgiamo o crediamo di scorgere – arrivando così ad antropomorfizzare la realtà che ci circonda. Nasce probabilmente in questo modo il pensiero antropocentrico, cioè “la tendenza a ragionare su specie o processi biologici sconosciuti per analogia con l’uomo”, stabilendo paragoni con l’uomo o menzionando il suo comportamento, il suo ruolo o il suo intervento in buon accordo con l’attribuzione inappropriata di caratteristiche umane (o animate) a entità non umane (o inanimate) tipiche dell’antropomorfismo. Così, abbiamo derformazioni del darwinismo in cui l’uomo è il culmine di un processo teleologico che ha interessata l’intera natura, per cui non è previsto che possa estinguersi per esempio a causa di un patogeno: la teleologia e l’antropocentrismo producono una visione quasi religiosa dell’evoluzione, in cui la continua selezione che ha agito sugli organismi precedenti ha prodotto miglioramenti continui fino a noi, a partire da stadi meno “perfezionati” perché più precoci.

La separazione fra specie evolutivamente superiori ed altre inferiori, alla base della visione antropocentrica appena illustrata, fa leva su un’altra euristica inconscia, ovvero l’essenzialismo. Il pensiero essenzialista spiega strutture, processi o fenomeni biologici in base all’idea che le proprietà sottostanti causino le caratteristiche esterne e che tali caratteristiche esibite dai membri di qualsiasi categoria biologicamente rilevante – siano esse cellule, specie o tipi di ecosistemi – debbano essere relativamente uniformi, statiche e prevedibili. Il ragionamento essenzialista include un riferimento indiretto a una categoria o a un gruppo biologico che implica l’uniformità rispetto a una proprietà o a un comportamento attraverso un linguaggio generico, del tipo “i gatti mangiano i topi”.

Oppure affermazioni come “la natura si trova in un equilibrio delicato, tale che senza cambiamenti drastici imposti artificialmente le comunità ecologiche rimarranno per lo più stabili”. In entrambi i casi, si fa riferimento a categorie astratte, la prima riguardo il comportamento di certi animali e la seconda riguardo alla costituzione e alle qualità delle comunità ecologiche, ipotizzando che esse non solo esistano, ma traendone l’esistenza dal fatto che sono state stabilmente osservate per un certo periodo di tempo in sistemi reali. Si immagina, cioè, che esista stabilmente “la felinità”, così come si immagina che esista una specie dai confini ben definibili chiamata gatto, e si pensa anche che esista per esempio una “foresta tropicale” intesa come entità ben definita e sostanzialmente identica a sé stessa nel tempo. L’essenzialismo, che è l’abbandono del punto di vista linguistico/operativo sulle nostre categorie astratte in favore della loro assunzione a realtà tangibili, è un modo di pensare fuorviante e pericoloso, se si considera che è alla base non solo dell’antropocentrismo, che necessita di definire e separare ontologicamente la specie umana dal resto del mondo naturale, ma anche per esempio del razzismo o dell’avversione agli ogm. Il pensiero darwiniano ha riconosciuto che la realtà biologica non è fatta di specie, razze o essenze platoniche, ma di individui tutti diversi che interagiscono all’interno di popolazioni e con un ambiente continuamente cangiante; quale che sia l’operazione arbitraria che utilizziamo per definire una popolazione, il processo darwiniano è sempre in atto date le condizioni che abbiamo visto, e dunque è insensato andare alla ricerca di essenze dato che non ne esistono.

Conclusione

Potremmo sintetizzare il nostro argomento con una frase: “la natura è indifferente a ogni aspettativa, finalità o scopo”. Ma cadremmo così in una volta sola in tutte le trappole linguistiche e concettuali contro cui abbiamo tentato di mettere in guardia il lettore. Un enunciato più corretto sarebbe che “i fenomeni naturali non si svolgono né sono spiegabili in funzione di una aspettativa, nostra o di qualunque altro agente”. Il fatto è che il linguaggio, in quanto specchio del nostro modo di pensare, è naturalmente forgiato per utilizzare le euristiche teleologiche, essenzialiste ed antropocentriche, cioè quanto di meglio era disponibile per la nostra sopravvivenza come specie prima dell’emergere del pensiero scientifico moderno; e persino oggi, in talune condizioni, è possibile, anzi è sicuro che tali euristiche abbiano un superiore valore di sopravvivenza per l’individuo e procurino migliori chance riproduttive rispetto al più accurato metodo con cui la scienza e la filosofia costruiscono i propri enunciati. Ci sono peraltro ampie prove del fatto che molte euristiche, basate sul cosiddetto pensiero veloce o intuitivo, portano a decisioni e risultati quasi coincidenti con quelli ottenuti usando il pensiero lento e l’intelligenza analitica.

Nel caso in cui, ai fini della determinazione del nostro agire, un enunciato costruito seguendo euristiche erronee come quello che abbiamo appena formulato non è differente da quello costruito secondo criteri più corretti, la cosa può essere, se correttamente intesa come una convenzione linguistica, addirittura più comoda per ragioni che hanno a che vedere con la compressibilità della comunicazione. Per questo anche gli scienziati continuamente possono cadere nel tipo di errori che abbiamo illustrato.

Se però il cuore di una discussione e il suo oggetto specifico ruotano attorno e dipendono da un meccanismo che ha contraddetto per sempre proprio l’utilizzo di quelle euristiche per spiegare certi fatti del mondo naturale, ovvero il meccanismo dell’evoluzione darwiniana, allora è necessario ripulire ogni singola frase usata, per evitare deduzioni ed usi impropri delle nostre parole. Operando in questo modo, cioè parlando da scienziati, quando si vuol utilizzare la scienza in un discorso, e ignorando quegli scienziati che più o meno consapevolmente manipolano l’opinione degli altri aggrappandosi al pensiero prescientifico, è per il resto possibile anche contemplare vette sublimi che sono raggiungibili utilizzando ad altri fini tutte le euristiche distrutte da Darwin. Come dimostra il grande recanatese, che alla Natura faceva dire queste parole:

“Immaginavi tu forse che il mondo fosse fatto per causa vostra? Ora sappi che nelle fatture, negli ordini e nelle operazioni mie, trattone pochissime, sempre ebbi e ho l’intenzione a tutt’altro che alla felicità degli uomini o all’infelicità. Quando io vi offendo in qualunque modo e con qual si sia mezzo, io non me n’avveggo, se non rarissime volte: come, ordinariamente, se io vi diletto o vi benefico, io non lo so; e non ho fatto, come credete voi, quelle tali cose, o non fo quelle tali azioni, per dilettarvi o giovarvi. E finalmente, se anche mi avvenisse di estinguere tutta la vostra specie, io non me ne avvedrei.”

Vuoi rimanere aggiornato sulle nuove tecnologie per la Didattica e ricevere suggerimenti per attività da fare in classe?

Sei un docente?

soloscuola.it la prima piattaforma
No Profit gestita dai

Volontari Per la Didattica
per il mondo della Scuola. 

 

Tutti i servizi sono gratuiti. 

Associazione di Volontariato Koinokalo Aps

Ente del Terzo Settore iscritta dal 2014
Tutte le attività sono finanziate con il 5X1000